Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram
- Corresponding author: Zhi WANG, shikouri@163.com Congyun ZHANG, zhangcy@qdu.edu.cn
Citation:
Huihui LIU, Baichuan ZHAO, Chuanhui WANG, Zhi WANG, Congyun ZHANG. Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(10): 2021-2030.
doi:
10.11862/CJIC.20240059
Bernat A, Samiwala M, Albo J, Jiang X Y, Rao Q C. Challenges in SERS-based pesticide detection and plausible solutions[J]. J. Agric. Food. Chem., 2019,67(45):12341-12347. doi: 10.1021/acs.jafc.9b05077
Zhao P N, Liu H Y, Zhang L N, Zhu P H, Ge S G, Yu J H. Paper-based SERS sensing platform based on 3D silver dendrites and molec-ularly imprinted identifier sandwich hybrid for neonicotinoid quantifi-cation[J]. ACS Appl. Mater. Interfaces, 2020,12(7):8845-8854. doi: 10.1021/acsami.9b20341
Jin X, Zhu Q Y, Feng L, Li X, Zhu H Y, Miao H Y, Zeng Z F, Shi G. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes[J]. ACS Appl. Mater. Interfaces, 2021,13(9):11535-11542. doi: 10.1021/acsami.1c00702
Li G J, Zhang X, Liu T T, Fan H X, Liu H C, Li S Y, Wang D W, Ding L. Dynamic microwave-assisted extraction combined with liquid phase microextraction based on the solidification of a floating drop for the analysis of organochlorine pesticides in grains followed by GC[J]. Food Sci. Human Wellness, 2021,10(3):375-382. doi: 10.1016/j.fshw.2021.02.029
Birader K, Kumar P, Tammineni Y, Barla J A, Barla R, Suman P. Col-orimetric aptasensor for on-site detection of oxytetracycline antibiotic in milk[J]. Food Chem., 2021,356129659. doi: 10.1016/j.foodchem.2021.129659
Park E, Lee J, Lee J, Lee J, Lee H S, Shin Y, Kim J H. Method for the simultaneous analysis of 300 pesticide residues in hair by LC-MS/MS and GC-MS/MS, and its application to biomonitoring of agricultural workers[J]. Chemosphere, 2021,277130215. doi: 10.1016/j.chemosphere.2021.130215
Chen Z J, Wu H L, Xiao Z L, Fu H J, Shen Y D, Luo L, Wang H, Lei H T, Xu Z L. Rational hapten design to produce high-quality antibod-ies against carbamate pesticides and development of immunochro-matographic assays for simultaneous pesticide screening[J]. J. Hazard. Mater., 2021,412125241. doi: 10.1016/j.jhazmat.2021.125241
Liebel M, Calderon I, Pazos-Perez N, Hulst N F V, Alvarez-Puebla R A. Widefield SERS for high-throughput nanoparticle screening[J]. Angew. Chem. Int. Ed., 2022,61(20)e202200072. doi: 10.1002/anie.202200072
Zhu W Q, Crozier K B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering[J]. Nat. Commun., 2014,55228. doi: 10.1038/ncomms6228
LIU Y J, YE F, WANG W, ZHANG J H, YAN C, YUAN A H. Fabri-cation of honeycomb-like Ag nanoparticles film used as surface enhanced Raman scattering substrate[J]. Chinese J. Inorg. Chem., 2019,35(10):1861-1868.
Langer J, Jimenez de Aberasturi D, Aizpurua J. Present and future of surface-enhanced Raman scattering[J]. ACS Nano, 2019,14(1):28-117.
Luo X J, Zhao X J, Wallace G Q, Wallace M H, Wilkinson K J, Wu P, Cai C X, Bazuin C J, Masson J F. Multiplexed SERS detection of microcystins with aptamer-driven core-satellite assemblies[J]. ACS Appl. Mater. Interfaces, 2021,13(5):6545-6556. doi: 10.1021/acsami.0c21493
Zhang D J, You H J, Yuan L, Hao R, Li T, Fang J X. Hydrophobic slippery surface-based surface-enhanced Raman spectroscopy plat-form for ultrasensitive detection in food safety applications[J]. Anal. Chem., 2019,91(7):4687-4695. doi: 10.1021/acs.analchem.9b00085
Lin J J, Liang L B, Ling X, Zhang S Q, Mao N N, Zhang N, Sumpter B J, Meunier V, Tong L M, Zhang J. Enhanced Raman scattering on in-plane anisotropic layered materials[J]. J. Am. Chem. Soc., 2015,137(49):15511-15517. doi: 10.1021/jacs.5b10144
Ding S Y, You E M, Tian Z Q, Moskovits M. Electromagnetic theo-ries of surface-enhanced Raman spectroscopy[J]. Chem. Soc. Rev., 2017,46(13):4042-4076. doi: 10.1039/C7CS00238F
LIU X Y, ZHANG D J, ZHANG H J, ZHANG C Y, LIU Y Q. Synthesis of Au@Ag core-shell nanoparticles for sensitive surface-enhanced Raman scattering by precisely adjust its morphology[J]. Chinese J. Inorg. Chem., 2018,34(4):712-718.
Zhang K G, Yao S, Li G K, Hu Y L. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for effi-cient surface-enhanced Raman scattering[J]. Nanoscale, 2015,7(6):2659-2666. doi: 10.1039/C4NR07082H
Koh C S L, Sim H Y F, Leong S X, Boong S K, Chong C, Ling X Y. Plasmonic nanoparticle-metal-organic framework (NP-MOF) nanohy-brid platforms for emerging plasmonic applications[J]. ACS Mater. Lett., 2021,3(5):557-573. doi: 10.1021/acsmaterialslett.1c00047
Lai H S, Li G K, Xu F G, Zhang Z M. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scatter-ing-A review[J]. J. Mater. Chem. C, 2020,8(9):2952-2963. doi: 10.1039/D0TC00040J
Zhang Y, Xue C, Li P, Cui S S, Cui D X, Jin H. Metal-organic frame-work engineered corn-like SERS active Ag@Carbon with controlla-ble spacing distance for tracking trace amount of organic com-pounds[J]. J. Hazard. Mater., 2022,424127686. doi: 10.1016/j.jhazmat.2021.127686
Xu Y J, Shi L X, Jing X H, Miao H Y, Zhang Y. SERS-active com-posites with Au-Ag Janus nanoparticles/perovskite in immunoassays for staphylococcus aureus enterotoxins[J]. ACS App.l Mater. Interfaces, 2022,14(2):3293-3301. doi: 10.1021/acsami.1c21063
Sun H Z, Cong S, Zheng Z H, Wang Z, Chen Z G, Zhao Z G. Metal-organic frameworks as surface enhanced Raman scattering sub-strates with high tailorability[J]. J. Am. Chem. Soc., 2018,141(2):870-878.
Sun H Z, Song G, Lu W B, Cong S, Zhao Z G, Gong W. Stabilizing photo-induced vacancy defects in MOF matrix for high-performance SERS detection[J]. Nano Res, 2022,15(6):5347-5354. doi: 10.1007/s12274-022-4185-x
Osterrieth J W M, Wright D, Noh H, Kung C W, Vulpe D, Li A, Park J E, Jimenez D F. Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective Raman probes[J]. J. Am. Chem. Soc., 2019,141(9):3893-3900. doi: 10.1021/jacs.8b11300
Li J, Liu Z F, Tian D H, Li B J, Shao L, Lou Z Z. Assembly of gold nanorods functionalized by zirconium-based metal-organic frame-works for surface enhanced Raman scattering[J]. Nanoscale, 2022,14(14):5561-5568. doi: 10.1039/D2NR00298A
ZHENG L Z, KANG X W, JI Y, ZOU Z J, WANG Y M, CHEN J F. Preparation of Ag/ZIF-90 self-assembled membrane and its high SERS performance[J]. Chinese J. Inorg. Chem., 2015,31(3):465-471.
Sun Y, Yu X X, Hu J Y, Zhuang X M, Wang J J, Qiu H X, Ren H T, Zhang S H, Zhang Y S, Hu Y J. Constructing a highly sensitivity SERS sensor based on a magnetic metal-organic framework (MOF) to detect the trace of thiabendazole in fruit juice[J]. ACS Sustain Chem. Eng., 2022,10:8400-8410.
Liao J, Wang D M, Liu A Q, Hu Y L, Li G K. Controlled stepwise-synthesis of core-shell Au@MIL-100(Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection[J]. Analyst, 2015,140(24):8165-8171.
Cai Y Z, Wu Y P, Xuan T, Guo X Y, Wen Y, Yang H F. Core-shell Au@metal-organic frameworks for promoting Raman detection sensi-tivity of methenamine[J]. ACS Appl. Mater. Interfaces, 2018,10(18):15412-15417.
He J C, Dong J W, Hu Y F, Li G K, Hu Y L. Design of Raman tag-bridged core-shell Au@Cu-3(BTC)(2) nanoparticles for Raman imag-ing and synergistic chemo-photothermal therapy[J]. Nanoscale, 2019,11(13):6089-6100.
Zheng G C, de Marchi S, Lopez-Puente V, Sentosun K, Sentosun L, Perez-Juste I, Hill E H, Bals S, Liz-Marzán L M, Pastoriza-Santos I, Perez-Juste J. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility[J]. Small, 2016,12(29):3935-3943.
Jiang P C, Hu Y, Li G K. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery[J]. Talanta, 2019,200:212-217.
Li D, Cao X K, Zhang Q M, Ren X G, Jiang L, Li D W, Deng W, Liu H T. Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons[J]. J. Mater. Chem. A, 2019,7(23):14108-14117.
Zhang P, Liu G Q, Feng S J, Zhou X, Xu W S, Cai W P. Engineering of flexible granular Au nanocap ordered array and its surface en-hanced Raman spectroscopy effect[J]. Nanotechnology, 2020,31(3)035303.
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Shu Tian , Wenxin Huang , Junrui Hu , Huiling Wang , Zhipeng Zhang , Liying Xu , Junrong Li , Yao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
Xueqi Zhang , Han Gao , Jianan Xu , Min Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
Yaxuan Jin , Chao Zhang , Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414
Yongsheng Xu , Lisha Yao , Jian Li , Yanzhao Dong , Dongyang Xie , Miaomiao Zhang , Feng Li , Yunsheng Dai , Jinli Zhang , Haiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318