Citation: Pingping HAO, Fangfang LI, Yawen WANG, Houfen LI, Xiao ZHANG, Rui LI, Lei WANG, Jianxin LIU. Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054 shu

Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells

Figures(9)

  • MoS2/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate, thiourea, oxalic acid, and copper nitrate trihydrate as raw materials. The hydrogen production performance of MoS2/CuS prepared with different molar ratios of Mo to Cu precursors (nMonCu) as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell (MEC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), linear scanning voltammetry (LSV), electrochemical impedance analysis (EIS), and cyclic voltammetry (CV) were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance. The results showed that the hydrogen evolution performance of MoS2/CuS-20% (nMonCu=5∶1) was better than that of platinum (Pt) mesh, and the hydrogen production rate of MoS2/CuS-20% as a cathode in MEC was (0.203 1±0.023 7) mH23·m-3·d-1 for 72 h at an applied voltage of 0.8 V, which was slightly higher than that of Pt mesh of (0.188 6±0.013 4) mH23·m-3·d-1. The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS2 but also increases the density of active sites.
  • 加载中
    1. [1]

      Li Y F, Ren N Q, Yang C P, Wang A J, Zadsar M, Li J Z, Hu L J. Molecular characterization and hydrogen production of a new species of anaerobe[J]. J. Environ. Sci. Health, 2005,40:1929-1938. doi: 10.1080/10934520500184483

    2. [2]

      Ren N, Li J Z, Li B K, Wang Y, Liu S R. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J]. Int. J. Hydrog. Energy, 2006,31:2147-2157. doi: 10.1016/j.ijhydene.2006.02.011

    3. [3]

      Kapdan I K, Kargi F. Bio-hydrogen production from waste materials[J]. Enzyme Microb. Technol., 2006,38:569-582. doi: 10.1016/j.enzmictec.2005.09.015

    4. [4]

      Wang J P, Song Y N, Hu J, Li Y, Wang Z Y, Yang P, Wang G, Ma Q, Che Q D, Dai Y, Huang B B. Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4[J]. Appl. Catal. B-Environ., 2019,251:94-101. doi: 10.1016/j.apcatb.2019.03.049

    5. [5]

      Zhang B B, Dong G J, Wang L, Zhang Y J, Ding Y, Bi Y P. Efficient hydrogen production from MIL-53(Fe) catalyst-modified Mo: BiVO4 photoelectrodes[J]. Catal. Sci. Technol., 2017,7:4971-4976. doi: 10.1039/C7CY01765K

    6. [6]

      Guan X, Zhou Z, Luo P, Wu F S, Dong S J. Effects of preparation method on the hydrolytic hydrogen production performance of Al-rich alloys[J]. J. Alloy. Compd., 2019,796:210-220. doi: 10.1016/j.jallcom.2019.05.053

    7. [7]

      Logan B E, Call D, Cheng S, Hamelers H V M, Sleutels T H J A, Jeremiasse A W, Rozendal R A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environ. Sci. Technol., 2008,42(23):8630-8640. doi: 10.1021/es801553z

    8. [8]

      DAI H Y, YANG H M, LIU X, JIAN X, GUO M M, CAO L L, YANG Z H. Preparation of MoS2/graphene composite cathode materials and hydrogen production performance catalyzed by microbial electrolytic cell[J]. Chem. J. Chinese Universities, 2018,39(2):351-358.

    9. [9]

      Geelhoed J S, Hamelers H V M, Stams A J M. Electricity-mediated biological hydrogen production[J]. Curr. Opin. Microbiol., 2010,13:307-315. doi: 10.1016/j.mib.2010.02.002

    10. [10]

      Savla N, Guin M, Pandit S, Malik H, Khilari S, Mathuriya A S, Gupta P K, Thapa B S, Bobba R, Jung S P. Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells[J]. Int. J. Hydrog. Energy, 2022,47:15333-15356. doi: 10.1016/j.ijhydene.2022.03.058

    11. [11]

      Ivanov I, Ahn Y T, Poirson T, Hickner M A, Logan B E. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2017,42:15739-15744.

    12. [12]

      Zhang H, Meng G, Wei T R, Ding J Y, Liu Q, Luo J, Liu X J. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets[J]. Chem. Commun., 2023,59:12144-12147.

    13. [13]

      Liu W X, Niu X X, Tang J W, Liu Q, Luo J, Liu X J, Zhou Y T. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis[J]. Chem. Synth., 2023,344.

    14. [14]

      Qin Y J, Cao H J, Liu Q, Yang S Q, Feng X C, Wang H, Lian M L, Zhang D X, Wang H, Luo J, Liu X J. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting[J]. Front. Chem. Sci. Eng., 2023,18(1)6.

    15. [15]

      Liu B, Zhao W J, Ding Z J, Verzhbitskiy I, Li L J, Lu J P, Chen J Y, Eda G, Loh K P. Engineering bandgaps of monolayer MoS2 and WS2 on fluoropolymer substrates by electrostatically tuned many-body effects[J]. Adv. Mater., 2016,28(30):6457-6464.

    16. [16]

      Naylor C H, Kybert N J, Schneier C, Xi J, Romero G, Saven J G, Liu R Y, Johnson A T C. Scalable production of molybdenum disulfide based biosensors[J]. ACS Nano, 2016,10(6):6173-6179.

    17. [17]

      Hwang J H, Fahad S, Ryu H, Rodriguez K L, Domingo J S, Kushima A, Lee W H. Recycling urine for bioelectrochemical hydrogen production using a MoS2 nano carbon coated electrode in a microbial electrolysis cell[J]. J. Power Sources, 2022,527231209.

    18. [18]

      Zhou M, Zhang R, Huang M A, Lu W, Song S L, Melancon M P, Tian M, Liang D, Li C. A chelator-free multifunctional[64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. J. Am. Chem. Soc., 2010,132:15351-15358.

    19. [19]

      Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, Govind , Pal T. Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting[J]. Environ. Sci. Technol., 2010,44:6313-6318.

    20. [20]

      Chunga J S, Sohnb H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. J. Power Sources, 2002,108:226-231.

    21. [21]

      Kim W B, Lee S H, Cho M, Lee Y. Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor[J]. Sensors Actuat. B: Chem., 2017,249:161-167.

    22. [22]

      Wu X Q, Huang D D, Wu Y P, Zhao J, Liu X, Dong W W, Li S, Li D S, Li J R. In situ synthesis of nano CuS-embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,2:5698-5706.

    23. [23]

      Wang Y C, Chao D L, Wang Z Z, Ni J F, Li L. An energetic CuS-Cu battery system based on CuS nanosheet arrays[J]. ACS Nano, 2021,15:5420-5427.

    24. [24]

      Liu S Q, Wen H R, Ying G, Zhu Y W, Fu X Z, Sun R, Wong C P. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis[J]. Nano Energy, 2018,44:7-14.

    25. [25]

      SHI Q P, CHENG Y Z, HUANG T, SUN Q, XIA B Y. Determination of sodium acetate for sewage treatment by spectrophotometric method[J]. Energy and Environment, 2002,5:78-80.

    26. [26]

      Dong Z S, Zhao Y, Fan L, Wang Y X, Wang J W, Zhang K. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J]. Int. J. Electrochem. Sci., 2017,12:10553-10566.

    27. [27]

      Kim M, Anjum M A R, Choi M, Jeong H Y, Choi S H, Park N, Lee J S. Covalent 0D-2D heterostructuring of Co9S8-MoS2 for enhanced hydrogen evolution in all pH electrolytes[J]. Adv. Funct. Mater., 2020,302002536.

    28. [28]

      Kim M S, Tran D T, Nguyen T H, Dinh V A, Kim N H, Lee J H. Ni single atoms and Ni phosphate clusters synergistically triggered surface-functionalized MoS2 nanosheets for high-performance freshwater and seawater electrolysis[J]. Energy Environ. Mater., 2022,5:1340-1349.

    29. [29]

      Zhou Q S, Feng J R, Peng X W, Zhong L X, Sun R C. Porous carbon coupled with an interlaced MoP-MoS2 heterojunction hybrid for efficient hydrogen evolution reaction[J]. J. Energy Chem., 2020,45:45-51.

    30. [30]

      Zhang X, Jia F F, Song S X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction[J]. Chem. Eng. J., 2021,405127013.

    31. [31]

      Lu Z Y, Li Y J, Lei X D, Liu J F, Sun X M. Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes[J]. Mater. Horiz., 2015,2:294-298.

    32. [32]

      An L, Huang L, Zhou P P, Yin J, Liu H Y, Xi P X. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures[J]. Adv. Funct. Mater., 2015,25:6814-6822.

    33. [33]

      Li F J, Liu W F, Sun Y, Ding W J, Cheng S A. Enhancing hydrogen production with Ni-P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2017,42:3641-3646.

    34. [34]

      Liu L, Liu X L, Jiao S L. CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution[J]. J. Colloid Interface Sci., 2020,564:77-87.

    35. [35]

      Ren X, Wu D, Ge R X, Sun X, Ma H M, Yan T, Zhang Y, Du B, Wei Q, Chen L. Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH[J]. Nano Res., 2018,11:2024-2033.

    36. [36]

      Liu W Z, Wang A J, Ren N Q, Zhao X Y, Liu L H, Yu Z G, Le D J. Electrochemically assisted biohydrogen production from acetate[J]. Energy Fuel, 2008,22:159-163.

    37. [37]

      Kiely P D, Cusick R, Call D F, Selembo P A, Regan J M, Logan B E. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters[J]. Bioresour. Technol., 2011,102:388-394.

    38. [38]

      Liu W Z, Wang A J, Sun D, Ren N Q, Zhang Y Q, Zhou J Z. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC)[J]. J. Biotechnol., 2012,157:628-632.

    39. [39]

      Shannon B C E. A mathematical theory of communication[J]. Bell System Technical Journal., 1948,27:379-423.

    40. [40]

      Shannon B C E. A mathematical theory of communication[J]. Bell System Technical Journal., 1948,27:623-656.

    41. [41]

      Fykse E M, Aarskaug T, Madslien E H, Dybwad M. Microbial community structure in a full-scale anaerobic treatment plant during start-up and first year of operation revealed by high-throughput 16S rRNA gene amplicon sequencing[J]. Bioresour. Technol., 2016,222:380-387.

    42. [42]

      Cho S K, Jeong M W, Choi Y K, Shin J, Shin S G. Effects of low-strength ultrasonication on dark fermentative hydrogen production: Start-up performance and microbial community analysis[J]. Appl. Energy, 2018,219:34-41.

    43. [43]

      Liu Z D, Zhang C, Wang L J, He J W, Li B M, Zhang Y H, Xing X H. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community[J]. Bioresour. Technol., 2015,175:152-159.

    44. [44]

      Vesga-Baron A, Etchebehere C, Schiappacasse M C, Chamy R, Tapia-Venegas E. Controlled oxidation-reduction potential on dark fermentative hydrogen production from glycerol: Impacts on metabolic pathways and microbial diversity of an acidogenic sludge[J]. Int. J. Hydrog. Energy, 2021,46:5074-5084.

  • 加载中
    1. [1]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    2. [2]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    3. [3]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    11. [11]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    12. [12]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    13. [13]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    14. [14]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    17. [17]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    18. [18]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    19. [19]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    20. [20]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

Metrics
  • PDF Downloads(1)
  • Abstract views(585)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return