Citation: Qingqing SHEN, Xiangbowen DU, Kaicheng QIAN, Zhikang JIN, Zheng FANG, Tong WEI, Renhong LI. Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028 shu

Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis

  • Corresponding author: Renhong LI, lirenhong@zstu.edu.cn
  • Received Date: 21 January 2024
    Revised Date: 30 August 2024

Figures(12)

  • Self-supporting Cu/α-FeOOH/NF catalysts were prepared by in-situ growth of Cu/α-FeOOH nanocomposites on foam nickel (NF) substrate by one-step solvothermal method. Compared with the α-FeOOH/NF catalyst, adding Cu provided more attachment sites for the growth of α-FeOOH, which makes the catalyst surface morphology rougher and increases the contact area between the catalyst and reactants. The assembled heterointerface between crystalline Cu and amorphous α-FeOOH altered the electronic structure of the catalyst. It promoted electron transfer from Ni and Fe to Cu, thus enhancing methanol adsorption and oxidation. The electrochemical tests revealed that the Cu/α-FeOOH/NF catalyst exhibited excellent methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) performance. In the Cu/α-FeOOH/NF||Cu/α-FeOOH/NF HER-MOR system, the voltage was reduced by 125 mV compared to the overall water splitting system at the geometric current density of 10 mA·cm-2. The catalytic system operated stably for 96 h under high voltage (2.4 V). In addition, the anode MOR produced value-added formate and the calculated Faraday efficiency based on formate was close to 97% under an applied voltage of 1.80 V.
  • 加载中
    1. [1]

      LI Y J, WANG X, ZHOU Y C. Ru loaded on NiFe layered double hydroxide nanosheet arrays for boosting alkaline electrocatalytic hydrogen evolution and oxygen evolution abilities. Chinese J. Inorg. Chem., 2023, 39(10): 1905-1913  doi: 10.11862/CJIC.2023.165

    2. [2]

      Zhao Y H, Wang Y Z, Dong Y T, Carlos C, Li J, Zhang Z Y, Li T, Shao Y, Yan S, Gu L, Wang J, Wang X D. Quasi-two-dimensional earth-abundant bimetallic electrocatalysts for oxygen evolution reactions. ACS Energy Lett., 2021, 6(9): 3367-3375  doi: 10.1021/acsenergylett.1c01302

    3. [3]

      Li M, Deng X H, Xiang K, Liang Y, Zhao B, Hao J, Luo J L, Fu X Z. Value-added formate production from selective methanol oxidation as anodic reaction to enhance electrochemical hydrogen cogeneration. ChemSusChem, 2020, 13(5): 914-921  doi: 10.1002/cssc.201902921

    4. [4]

      Li P P, Zhao R B, Chen H Y, Wang H B, Wei P P, Huang H, Liu Q, Li T S, Shi X F, Zhang Y Y, Liu M L, Sun X P. Recent advances in the development of water oxidation electrocatalysts at mild pH. Small, 2019, 15(13): 1805103  doi: 10.1002/smll.201805103

    5. [5]

      You B, Han G Q, Sun Y J. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chem. Commun., 2018, 54(47): 5943-5955  doi: 10.1039/C8CC01830H

    6. [6]

      Wang Y T, Yu Y F, Jia R R, Zhang C, Zhang B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev., 2019, 6(4): 730-738  doi: 10.1093/nsr/nwz019

    7. [7]

      Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem, 2019, 6(13): 3214-3226  doi: 10.1002/celc.201900675

    8. [8]

      Shi G D, Yu C, Fan Z X, Li J B, Yuan M J. Graphdiyne-supported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution. ACS Appl. Mater. Interfaces, 2019, 11(3): 2662-2669  doi: 10.1021/acsami.8b03345

    9. [9]

      Shi Y M, Yu Y, Liang Y, Du Y H, Zhang B. In situ electrochemical conversion of an ultrathin tannin nickel iron complex film as an efficient oxygen evolution reaction electrocatalyst. Angew. Chem. Int. Ed., 2019, 58(12): 3769-3773  doi: 10.1002/anie.201811241

    10. [10]

      Xu W J, Lan R, Du D W, Humphreys J, Walker M, Wu Z C, Wang H T, Tao S W. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Cata. B-Environ., 2017, 218: 470-479  doi: 10.1016/j.apcatb.2017.07.005

    11. [11]

      Zhao L, Zhang Y, Zhao Z L, Zhang Q H, Huang L B, Gu L, Lu G, Hu J S, Wan L J. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev., 2020, 7(1): 27-36  doi: 10.1093/nsr/nwz145

    12. [12]

      Huang Y, Chong X D, Liu C B, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem. Int. Ed., 2018, 57(40): 13163-13166  doi: 10.1002/anie.201807717

    13. [13]

      Wu T X, Zhu X G, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Vapor-phase hydrothermal growth of single crystalline NiS2 nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H2 evolution. Nano Res., 2018, 11(2): 1004-1017  doi: 10.1007/s12274-017-1714-0

    14. [14]

      Kowal A, Port S N, Nichols R J. Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods. Catal. Today, 1997, 38(4): 483-492  doi: 10.1016/S0920-5861(97)00049-7

    15. [15]

      Marshall A T, Haverkamp R G. Production of hydrogen by the electrochemical reforming of glycerol-water solutions in a PEM electrolysis cell. Int. J. Hydrog. Energy, 2008, 33(17): 4649-4654  doi: 10.1016/j.ijhydene.2008.05.029

    16. [16]

      Singh T I, Rajeshkhanna G, Singh S B, Kshetri T, Kim N H, Lee J H. Metal-organic framework-derived Fe/Co-based bifunctional electrode for H2 production through water and urea electrolysis. ChemSusChem, 2019, 12(21): 4810-4823  doi: 10.1002/cssc.201902232

    17. [17]

      Wang G X, Wen Z H. Self-supported bimetallic Ni-Co compound electrodes for urea- and neutralization energy-assisted electrolytic hydrogen production. Nanoscale, 2018, 10(45): 21087-21095  doi: 10.1039/C8NR06740F

    18. [18]

      Tong Y, Chen P Z, Zhang M X, Zhou T P, Zhang L D, Chu W S, Wu C Z, Xie Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal., 2018, 8(1): 1-7  doi: 10.1021/acscatal.7b03177

    19. [19]

      Tang C, Zhang R, Lu W B, Wang Z, Liu D N, Hao S, Du G, Asiri A M, Sun X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed., 2017, 56(3): 842-846  doi: 10.1002/anie.201608899

    20. [20]

      Du X B W, Tan M W, Wei T, Kobayashi H, Song J J, Peng Z X, Zhu H L, Jin Z K, Li R H, Liu W. Highly efficient and robust nickel-iron bifunctional catalyst coupling selective methanol oxidation and freshwater/seawater hydrogen evolution via CO-free pathway. Chem. Eng. J., 2023, 452: 139404  doi: 10.1016/j.cej.2022.139404

    21. [21]

      Xia Z X, Zhang X M, Sun H, Wang S, Sun G Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy, 2019, 65: 104048  doi: 10.1016/j.nanoen.2019.104048

    22. [22]

      Hao J, Liu J W, Wu D, Chen M X, Liang Y, Wang Q, Wang L, Fu X Z, Luo J L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Cata. B-Environ., 2021, 281: 119510  doi: 10.1016/j.apcatb.2020.119510

    23. [23]

      GUO S L, ZHANG L, YAN J H, YANG H H, HUANG Y. In situ preparation of FeOOH/MoSey on nickel foam for electrocatalytic water splitting. Shandong Chemical Industry, 2023, 52(17): 22-26

    24. [24]

      Hu E L, Yao Y, Cui Y J, Wang Z Y, Qian G D. Designed construction of hierarchical CoOOH@Co-FeOOH double-shelled arrays as superior water oxidation electrocatalyst. J. Solid State Chem., 2021, 294: 121867  doi: 10.1016/j.jssc.2020.121867

    25. [25]

      Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater., 2016, 28(42): 9266-9291  doi: 10.1002/adma.201602270

    26. [26]

      Chemelewski W D, Lee H C, Lin J F, Bard A J, Mullins C B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc., 2014, 136(7): 2843-2850  doi: 10.1021/ja411835a

    27. [27]

      Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed., 2016, 55(11): 3694-3698  doi: 10.1002/anie.201511447

    28. [28]

      Paixão T R L C, Ponzio E A, Torresi R M, Bertotti M. EQCM behavior of copper anodes in alkaline medium and characterization of the electrocatalysis of ethanol oxidation by Cu(Ⅲ). J. Braz. Chem. Soc., 2006, 17(2): 374-381

    29. [29]

      Zhao G Q, Rui K, Dou S X, Sun W P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater., 2018, 28(43): 1803291  doi: 10.1002/adfm.201803291

    30. [30]

      Zhang X, Yi H, Jin M T, Lian Q, Huang Y, Ai Z, Huang R Q, Zuo Z T, Tang C M, Amini A, Jia F F, Song S X, Cheng C. In situ reconstructed Zn doped FexNi(1-x)OOH catalyst for efficient and ultrastable oxygen evolution reaction at high current densities. Small, 2022, 18(37): 2203710  doi: 10.1002/smll.202203710

    31. [31]

      Cheng J L, Shen B S, Song Y Y, Liu J, Ye Q, Mao M, Cheng Y L. FeOOH decorated CoP porous nanofiber for enhanced oxygen evolution activity. Chem. Eng. J., 2022, 428: 131130  doi: 10.1016/j.cej.2021.131130

    32. [32]

      Inamdar A I, Chavan H S, Hou B, Lee C H, Lee S U, Cha S N, Kim H, Im H. A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting. Small, 2020, 16(2): 1905884  doi: 10.1002/smll.201905884

    33. [33]

      Li D, Zhang B W, Li Y, Chen R S, Hu S, Ni H W. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide. Electrochem. Commun., 2019, 101: 23-27  doi: 10.1016/j.elecom.2019.01.014

    34. [34]

      Liu J, Wang J S, Zhang B, Ruan Y J, Lv L, Ji X, Xu K, Miao L, Jiang J J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces, 2017, 9(18): 15364-15372  doi: 10.1021/acsami.7b00019

    35. [35]

      Yao Y, Hu E, Zheng H Q, Chen Y, Wang Z Y, Cui Y J, Qian G D. Scalable synthesis of NiFe-LDH/Ni9S8/NF nanosheets by two-step corrosion for efficient oxygen electrocatalysis. ChemCatChem, 2022, 14(1): e202101280  doi: 10.1002/cctc.202101280

    36. [36]

      Jiang J, Liu Q X, Zeng C M, Ai L H. Cobalt/molybdenum carbide@ N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A, 2017, 5(32): 16929-16935  doi: 10.1039/C7TA04893A

    37. [37]

      Tang Y Q, Fang X Y, Zhang X, Fernandes G, Yan Y, Yan D P, Xiang X, He J. Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Appl. Mater. Interfaces, 2017, 9(42): 36762-36771  doi: 10.1021/acsami.7b10338

    38. [38]

      Zhang B W, Li C J, Yang G, Huang K, Wu J S, Li Z, Cao X, Peng D D, Hao S J, Huang Y Z. Nanostructured CuO/C hollow shell@3D copper dendrites as a highly efficient electrocatalyst for oxygen evolution reaction. ACS App. Mater. Interfaces, 2018, 10(28): 23807-23812  doi: 10.1021/acsami.8b05948

    39. [39]

      Niu Y L, Li W, Wu X J, Feng B M, Yu Y, Hu W H, Li C M. Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation. J. Mater. Chem. A, 2019, 7(17): 10534-10542  doi: 10.1039/C8TA12483C

    40. [40]

      Fan Y, Yang X, Wei E, Dong Y, Gao H T, Luo X L, Yang W L. Promoted electro-oxidation kinetics in chromium-doped α-Ni(OH)2 nanosheets for efficient selective conversion of methanol to formate. Appl. Catal. B-Environ., 2024, 345: 123716  doi: 10.1016/j.apcatb.2024.123716

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    12. [12]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(32)
  • Abstract views(1438)
  • HTML views(387)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return