Citation: Qin ZHU, Jiao MA, Zhihui QIAN, Yuxu LUO, Yujiao GUO, Mingwu XIANG, Xiaofang LIU, Ping NING, Junming GUO. Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022 shu

Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles

Figures(11)

  • Combined with the element doping and morphology controlling strategies, the LiAl0.08Mn1.92O4 cathode material was synthesized by solid-state combustion method and dealt with at different calcination temperatures (600, 650, 700, and 750 ℃). The experimental results showed that the phase structure of LiMn2O4 was not changed by Al doping and the change of calcination temperature. With the increase in temperature, the crystallinity of the sample increased and the particle size enlarged. The calcination temperature of 650 ℃ was the key temperature for the formation of truncated octahedral single crystal particle morphology, and 750 ℃ was the abrupt temperature of the particles that suddenly became larger. The LiAl0.08Mn1.92O4 material with an optimized calcination temperature of 650 ℃ formed a relatively complete truncated octahedral single crystal morphology particle containing (111), (110), and (100) crystal planes, and showed excellent electrochemical and kinetic performance. The initial discharge capacity was 112.0 mAh·g-1 at 1C, and the capacity retention rate was 72.9% after 500 cycles. The initial discharge capacities were 107.1 and 100.4 mAh·g-1 at 5C and 10C, and the capacity retention rates were 52.2% and 53.5% after 2 000 cycles, respectively. It had the minimum redox peak potential difference (ΔEp2=0.109 and 0.114 V before and after cycling respectively), the minimum charge transfer resistance (Rct=106.49 and 125.49 Ω before and after cycling respectively), and the large lithium-ion diffusion coefficient (DLi+=1.72×10-16 cm2·s-1). The Al doping and single crystal truncated octahedral particle morphology not only effectively inhibited the Jahn-Teller effect of LiMn2O4 but also relieved the dissolution of Mn, and improved the rate performance and long cycle life of the materials.
  • 加载中
    1. [1]

      WANG N, LI M, JI Y, XIANG M W, GUO Y J, BAI H L, LIU X F, GUO J M. Synthesis and electrochemical properties of truncated octahedral LiZn0.08Al0.01Mn1.91O4 cathode material by solid-state combustion method[J]. Chinese J. Inorg. Chem., 2023,39(6):1042-1052.  

    2. [2]

      Chen Y, Yu D J, An K. Stress-included charge-ordering process in LiMn2O4[J]. Mater. Res. Lett., 2016,5(2):89-94.

    3. [3]

      LUO Y, DING Z B, LIU W, YAN L Q, MIN F Q, XIE J Y, LU J. Preparation and properties of micron single crystal high‑voltage LiNi0.5Mn1.5O4 material[J]. Chinese J. Inorg. Chem., 2022,38(4):611-619.  

    4. [4]

      Sun X R, Xiao R J, Yu X Q, Li H. First-principles simulations for the surface evolution and Mn dissolution in the fully delithiated spinel LiMn2O4[J]. Langmuir, 2021,37:5252-5259. doi: 10.1021/acs.langmuir.1c00197

    5. [5]

      WANG T, WANG W, ZHU D, DUAN X B, WEI Z Q, CHEN Y G. LaF3-coated LiMn2O4: Synthesis and improved performance[J]. Chinese J. Inorg. Chem., 2014,30(11):2461-2468.  

    6. [6]

      He J Y, Ren Y, Zhuang S X, Jiang S Y, Pan X X, Sun G X, Zhu B, Wen Y F, Li X D. Enhanced high-temperature electrochemical properties of in situ carbon-coated truncated octahedral LiMn2O4 cathodes[J]. Chem. Commun., 2023,59:13050-13053. doi: 10.1039/D3CC04119K

    7. [7]

      Jiang S J, Wang S, Li Y J, Hao S P, Xi X M, Liu S W, Xiong Y K, Zhen J C, Zhang P P. Structure and interface modification via Gd boosting excellent high-temperature electrochemical performance of LiMn2O4[J]. Mater. Today Energy, 2022,29101096. doi: 10.1016/j.mtener.2022.101096

    8. [8]

      Margarette S J, Bangeppagari M, Babu K V, Sailaja J M, Veeraiah V, Sangaraju S, Ayyar M, Ravi M. Ce and Cu co-doped LiMn2O4 cathode material: Synthesis, characterization and electrochemical performances[J]. Ceram. Int., 2024,50:4955-4964. doi: 10.1016/j.ceramint.2023.11.238

    9. [9]

      Xie T X, Ren P W, Yu L Y, Li W, Deng H J, Jiang J B. Optimization of Al3+ doping on the microstructure and electrochemical performance of spinel LiMn2O4[J]. Chinese J. Struct. Chem., 2022,41(2):168-175.

    10. [10]

      Chen H C, Jan D J, Lin B C, Hsueh T H. Nanostructure distortion improvement of Al doped spinel LiMn2O4 films deposited by RF magnetron sputtering for flexible high-voltage lithium ion batteries[J]. Mater. Res. Bull., 2021,140111313. doi: 10.1016/j.materresbull.2021.111313

    11. [11]

      Hou P Y, Tian Y H, Lin Z Z, Dong M H, Li F. Understanding the key role of {100} exposed crystal facets on the electrochemistry of the spinel LiMn2O4 cathode[J]. Inorg. Chem. Front., 2023,105452. doi: 10.1039/D3QI01019H

    12. [12]

      Kim J S, Kim K S, Cho W, Shin W H, Kanno R, Choi J W. A truncated manganese spinel cathode for excellent power and lifetime in lithium ion batteries[J]. Nano Lett., 2012,12(12):6358-6365. doi: 10.1021/nl303619s

    13. [13]

      CHEN Y F, YANG M, XIANG M W, BAI W, GUO J M. Synthesis and electrochemical properties of LiMg0.02Mn1.98O4 cathode materials by solid-state combustion method[J]. Journal of Materials and Metallurgy, 2023,22(6):573-581.  

    14. [14]

      Lee S N, Park D H, Kim J H, Moon S H, Jang J S, Kim B, Shin J H, Park Y Y, Park K W. Enhanced cycling performance of Fe-doped LiMn2O4 truncated octahedral cathodes for Li‑ion batteries[J]. ChemElectroChem, 2022,9(11)e202200385. doi: 10.1002/celc.202200385

    15. [15]

      Fu Y, Jiang H, Hu Y, Dai Y H, Zhang L, Li C Z. Synergistic enhancement effect of Al doping and highly active facets of LiMn2O4 cathode materials for lithium-ion batteries[J]. Ind. Eng. Chem. Res., 2015,54(15):3800-3805. doi: 10.1021/ie504659h

    16. [16]

      Feng X Y, Tian Y, Zhang J X, Yin L W. The effect of aluminum precursors on the structural and electrochemical properties of spinel LiMn2-xAlxO4 (x=0, 0.05, 0.1, 0.15) cathode materials[J]. Powder Technol., 2014,253:35-40. doi: 10.1016/j.powtec.2013.11.006

    17. [17]

      LI M, LIU H L, GUO J M, XIANG M W, LIU X F, BAI H L, BAI W. Preparation and electrochemical properties of Li-Ni co-doping spinel LiMn2O4 single crystal polyhedron material[J]. Acta Materiae Compositae Sinica, 2021,38(10):3402-3411.  

    18. [18]

      Yang M, Liang Q M, Guo Y J, Guo J M, Xiang M W, Bai W, Liu X F. Boosting high-rate capacity and long-cycle stability of spinel LiMn2O4 by the Cr-Al co-doping strategy[J]. J. Energy Storage, 2023,72108528. doi: 10.1016/j.est.2023.108528

    19. [19]

      Chen Y F, Li M, Zhu Q, Bai W, Liu X F, Xiang M W, Guo J M, Liu J T. Enhanced high-rate performance in Zn/Al dual-doped LiMn2O4 with submicron truncated structure[J]. J. Energy Storage, 2024,82110610. doi: 10.1016/j.est.2024.110610

    20. [20]

      Xu W Q, Li Q L, Sui F R, Guo S M, Qi R J, Yan C Q, Chen L J, Xia S B, Guo J M, Li Z, Huang R, Cheng F X. Unveiling the role of Ni doping in the electrochemical performance improvement of the LiMn2O4 cathodes[J]. Appl. Surf. Sci., 2023,624157142. doi: 10.1016/j.apsusc.2023.157142

    21. [21]

      LIU Q, GUO J M, LIU X F, BAI H L, XIANG M W, BAI W, DUAN K J. Preparation and long cycle electrochemical properties of B-doped spinel LiMn2O4 cathode material[J]. Chinese J. Inorg. Chem., 2021,37(2):276-284.  

    22. [22]

      Zhou G L, Chen L L, Li X W, Luo G L, Yu Z D, Yin J Z, Fan L, Chao Y H, Jiang L, Zhu W S. Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine[J]. Green Energy Environ., 2023,8:1081-1090. doi: 10.1016/j.gee.2021.12.002

    23. [23]

      Yi T F, Shi L N, Han X, Wang F F, Zhu R R, Xie Y. Approaching high-performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets[J]. Energy Environ. Mater., 2021,4:586-595. doi: 10.1002/eem2.12140

    24. [24]

      Tao Y, Lu Y, Guo Y J, Guo J M, Xiang M W, Bai W, Liu X F, Bai H L. Facile synthesis and electrochemical properties of truncated octahedral Al, Ni dual doped LiMn2O4 cathode materials[J]. J. Alloy. Compd., 2022,904164027. doi: 10.1016/j.jallcom.2022.164027

    25. [25]

      Wei T T, Peng P P, Ji Y R, Zhu Y R, Yi T F, Xie Y. Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials[J]. J. Energy Chem., 2022,71:400-410. doi: 10.1016/j.jechem.2022.04.017

    26. [26]

      Wei T T, Liu X, Yang S J, Wang P F, Yi T F. Regulating the electrochemical activity of Fe-Mn-Cu-based layer oxides as cathode materials for high-performance Na-ion battery[J]. J. Energy Chem., 2023,80:603-613. doi: 10.1016/j.jechem.2023.02.016

    27. [27]

      Yi T F, Qiu L Y, Mei J, Qi S Y, Cui P, Luo S H, Zhu Y R, Xie Y, He Y B. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials[J]. Sci. Bull., 2020,65:546-556. doi: 10.1016/j.scib.2020.01.011

    28. [28]

      GUO Y J, LU Y, NING P, GUO J M. Preparation and electrochemical performance of single crystal polyhedron LiAl0.08Ni0.03Mn1.89O4 cathode material[J]. Rare Metal Materials and Engineering, 2021,50(12):4525-4533.  

    29. [29]

      Zhu J Y, Liu Q, Xiang M W, Guo J M, Bai H L, Liu X F, Su C W, Bai W. Facile synthesis of truncated octahedron LiNi0.10Mn1.90O4 for high-performance Li-ion batteries[J]. Ceram. Int., 2020,46:14516-14522. doi: 10.1016/j.ceramint.2020.02.250

    30. [30]

      Xu C R, Li Y J, Xu H, Li P L, Kong L, Su Q Y, Cao X L. Electrochemical evaluation of Co-Al dual-doped LiMn2O4 spinels synthesized via hydrothermal method[J]. Int. J. Electrochem. Sci., 2017,12:5185-5198. doi: 10.20964/2017.06.09

    31. [31]

      LIU H L, GUO J M, XIANG M W, BAI W, BAI H L, LIU X F, DUAN K J. Synthesis and electrochemical performance of submicron LiFe0.05Mn1.95O4 cathode material[J]. Chemical Industry and Engineering Progress, 2021,40(7):3915-3922.  

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(5)
  • Abstract views(645)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return