Citation: Fan JIA, Wenbao XU, Fangbin LIU, Haihua ZHANG, Hongbing FU. Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473 shu

Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4

Figures(6)

  • Mn2+-doped quasi-two-dimensional perovskite (PEA)2PbyMn1-yBr4 (PEA is phenylethylamine, y is the fraction of Pb2+ in the total content of Mn2+ and Pb2+) thin films were prepared successfully with high photoluminescence quantum yield (PLQY). It constructed a dual-emissive excited state transfer system, while (PEA)2PbBr4 and impurity Mn2+ respectively act as the donor and acceptor. Mn2+ incorporation improved the luminescence properties and film morphologies. Using the femtosecond transient absorption (TA) measurement, we demonstrated the charge transfer processes between the host and the guest. To study the electroluminescence properties, (PEA)2PbyMn1-yBr4 film was employed as the active layer to fabricate LED (light emitting diodes, LEDs) devices. The (PEA)2PbyMn1-yBr4 LED device emitted a bright orange color, which demonstrated a maximum luminous intensity of 0.21 cd·m-2 with an external quantum efficiency (EQE) of 0.002 5%.
  • 加载中
    1. [1]

      Li C W, Wang X M, Bi E B, Jiang F Y, Park S M, Li Y, Chen L, Wang Z W, Zeng L W, Chen H, Liu Y J, Grice C R, Abudulimu A, Chung J H, Xian Y M, Zhu T, Lai H G, Chen B, Ellingson R J, Fu F, Ginger D S, Song Z N, Sargent E H, Yan Y F. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells[J]. Science, 2023,379(6633):690-694. doi: 10.1126/science.ade3970

    2. [2]

      Shen X Y, Gallant B M, Holzhey P, Smith J A, Elmestekawy K A, Yuan Z C, Rathnayake P V G M, Bernardi S, Dasgupta A, Kasparavicius E, Malinauskas T, Caprioglio P, Shargaieva O, Lin Y H, McCarthy M M, Unger E, Getautis V, Widmer-Cooper A, Herz L M, Snaith H J. Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells[J]. Adv. Mater., 2023,35(30)2211742. doi: 10.1002/adma.202211742

    3. [3]

      Yang R, Li R Z, Cao Y, Wei Y Q, Miao Y F, Tan W L, Jiao X C, Chen H, Zhang L D, Chen Q, Zhang H T, Zou W, Wang Y M, Yang M, Yi C, Wang N N, Gao F, McNeill C R, Qin T S, Wang J P, Hang W. Oriented quasi-2D perovskites for high performance optoelectronic devices[J]. Adv Mater., 2018,30(51)1804771. doi: 10.1002/adma.201804771

    4. [4]

      Xue J J, Wang R, Chen X H, Yao C L, Jin X Y, Wang K L, Huang W C, Huang T Y, Zhao Y P, Zhai Y X, Meng D, Tan S, Liu R Z, Wang Z K, Zhu C H, Zhu K, Beard M C, Yan Y F, Yang Y. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations[J]. Science, 2021,371(6529):636-640. doi: 10.1126/science.abd4860

    5. [5]

      Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 2018,562(7726):245-248. doi: 10.1038/s41586-018-0575-3

    6. [6]

      Sun Y Q, Ge L S, Dai L J, Cho C S, Orri J F, Ji K Y, Zelewski S J, Liu Y, Mirabelli A J, Zhang Y C, Huang J Y, Wang Y S, Gong K, Lai M C, Zhang L, Yang D, Lin J D, Tennyson E M, Ducati C, Stranks S D, Cui L S, Greeham N C. Bright and stable perovskite light-emitting diodes in the near-infrared range[J]. Nature, 2023,615(7954):830-835. doi: 10.1038/s41586-023-05792-4

    7. [7]

      Zhang J B, Zhang T K, Ma Z Z, Yuan F L, Zhou X, Wang H Y, Liu Z, Qing J, Chen H T, Li X J, Su S J, Xie J N, Shi Z F, Hou L T, Shan C X. A multifunctional "halide-equivalent" anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23%[J]. Adv. Mater., 2023,35(8)2209002. doi: 10.1002/adma.202209002

    8. [8]

      Karlsson M, Yi Z Y, Reichert S, Luo X Y, Lin W H, Zhang Z Y, Bao C X, Zhang R, Bai S, Zheng G H J, Teng P P, Duan L, Lu Y, Zheng K B, Pullerits T, Deibel C, Xu W D, Friend R, Gao F. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nat. Commun., 2021,12(1)361. doi: 10.1038/s41467-020-20582-6

    9. [9]

      Cui J Y, Liu Y, Deng Y Z, Lin C, Fang Z S, Xiang C S, Bai P, Du K, Zuo X B, Wen K C, Gong S L, He H P, Ye Z Z, Gao Y N, Tian H, Zhao B D, Wang J P, Jin Y Z. Efficient light-emitting diodes based on oriented perovskite nanoplatelets[J]. Sci. Adv., 2021,7(41)8458. doi: 10.1126/sciadv.abg8458

    10. [10]

      Sun Q, Zhao C Y, Yin Z X, Wang S P, Leng J, Tian W M, Jin S Y. Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites[J]. J. Am. Chem. Soc., 2021,143(45):19128-19136. doi: 10.1021/jacs.1c08900

    11. [11]

      Zhang H H, Wu C, Xu W B, Fu H B. Compact-type quasi-2D perovskite based on two conventional 3D perovskites[J]. Nano Lett., 2022,23(1):252-258.

    12. [12]

      LU X R, ZHAO Y, LIU J, LI C H, YOU X C. Modulation of the structure and property ABX3 type perovskite photovoltaic material[J]. Chinese J. Inorg. Chem., 2015,31(9):1678-1686.  

    13. [13]

      ZHANG Y, ZHOU H P. Intrinsic stability of organic-inorganic hybrid perovskite[J]. Acta Phys. Sin., 2019,68(15):137-147.  

    14. [14]

      Smith I C, Hoke E T, Solis-Ibarra D, McGehee M D, Karunadasa H I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew. Chem. Int. Ed., 2014,53(42):11232-11235. doi: 10.1002/anie.201406466

    15. [15]

      Zhao C Y, Tian W M, Sun Q, Yin Z X, Leng J, Wang S P, Liu J X, Wu K F, Jin S Y. Trap-enabled long-distance carrier transport in perovskite quantum wells[J]. J. Am. Chem. Soc., 2020,142(35):15091-15097. doi: 10.1021/jacs.0c06572

    16. [16]

      Zhang L, Sun C J, He T W, Jiang Y Z, Wei J L, Huang Y M, Yuan M J. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices[J]. Light-Sci. Appl., 2021,10(1)61. doi: 10.1038/s41377-021-00501-0

    17. [17]

      Sun C J, Jiang Y Z, Cui M H, Qiao L, Wei J L, Huang Y M, Zhang L, He T W, Li S S, Hsu H Y, Qin C C, Long R, Yuan M J. High-performance large-area quasi-2D perovskite light-emitting diodes[J]. Nat. Commun., 2021,12(1)2207. doi: 10.1038/s41467-021-22529-x

    18. [18]

      Qin C J, Matsushima T, Potscavage W J, Sandanayaka A S D, Leyden M R, Bencheikh F, Goushi K, Mathevet F, Heinrich B, Yumoto G, Kanemitsu Y, Adachi C. Triplet management for efficient perovskite light-emitting diodes[J]. Nat. Photonics, 2020,14(2):70-75. doi: 10.1038/s41566-019-0545-9

    19. [19]

      Zhang H H, Yao J N, Zhou K G, Yang Y A, Fu H B. Thermally activated charge transfer in dual-emission Mn2+-alloyed perovskite quantum wells for luminescent thermometers[J]. Chem. Mater., 2022,34(4):1854-1861. doi: 10.1021/acs.chemmater.1c04118

    20. [20]

      Mao L L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises[J]. J. Am. Chem. Soc., 2018,141(3):1171-1190.

    21. [21]

      Guo Y X, Yin X T, Liu D, Liu J, Zhang C, Xie H X, Yang Y W, Que W X. Photoinduced self-healing of halide segregation in mixed- halide perovskites[J]. ACS Energy Lett., 2021,6(7):2502-2511. doi: 10.1021/acsenergylett.1c01040

    22. [22]

      Zhong Y, Yang J, Wang X Y, Liu Y K, Cai Q Q, Tan L C, Chen Y W. Inhibition of ion migration for highly efficient and stable perovskite solar cells[J]. Adv Mater., 2023,35(52)2302552. doi: 10.1002/adma.202302552

    23. [23]

      Yun R, Yang H X, Sun W D, Zhang L B, Liu X W, Zhang X D, Li X Y. Recent advances on Mn2+-doping in diverse metal halide perovskites[J]. Laser Photonics Rev., 2023,17(2)2200524. doi: 10.1002/lpor.202200524

    24. [24]

      Wang S, Cai P Q, Xu T M, Pu X P, Du P, Wang X F, Tang Y, Yuan X L, Chen H C, Ai Q, Si J J, Yao X, Rabchinskii M K, Brunkov P N, Liu Z G. Self-trapped-induced energy funneling and broadband emission in the Mn2+ doped two-dimensional perovskite[J]. J. Lumin., 2020,226117457. doi: 10.1016/j.jlumin.2020.117457

    25. [25]

      He Y H, Stoumpos C C, Hadar I, Luo Z Z, McCall K M, Liu Z F, Chung D Y, Wessels B W, Kanatzidis M G. Demonstration of energy-resolved γ‑ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. J. Am. Chem. Soc., 2021,143(4):2068-2077. doi: 10.1021/jacs.0c12254

    26. [26]

      Li R J, Chen B B, Ren N Y, Wang P Y, Shi B, Xu Q J, Zhao H, Han W, Zhu Z, Liu J J, Huang Q, Zhang D K, Zhao Y, Zhang X D. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiOx-based perovskite/silicon tandem solar cells[J]. Adv. Mater., 2022,34(27)2201451. doi: 10.1002/adma.202201451

    27. [27]

      Ji S H, Yuan X, Cao S, Ji W Y, Zhang H Z, Wang Y J, Li H B, Zhao J L, Zou B S. Near-unity red Mn2+ photoluminescence quantum yield of doped CsPbCl3 nanocrystals with Cd incorporation[J]. J. Phys. Chem. Lett., 2020,11(6):2142-2149. doi: 10.1021/acs.jpclett.0c00372

    28. [28]

      Cortecchia D, Mróz W, Neutzner S, Borzda T, Folpini G, Brescia R, Petrozza A. Defect engineering in 2D perovskite by Mn(Ⅱ) doping for light-emitting applications[J]. Chem, 2019,5(8):2146-2158. doi: 10.1016/j.chempr.2019.05.018

    29. [29]

      Zhang H H, Yao J N, Yang Y A, Fu H B. Tailoring color-tunable dual emissions of Mn2+-alloyed two-dimensional perovskite quantum wells[J]. Chem. Mater., 2021,33(8):2847-2854. doi: 10.1021/acs.chemmater.0c04934

    30. [30]

      Li C H A, Geng P, Shivarudraiah S B, Ng M, Zhang X F, Xu B M, Guo L, Halpert J E. The multiple roles of metal ion dopants in spectrally stable, efficient quasi-2D perovskite sky-blue light-emitting devices[J]. Adv. Opt. Mater., 2021,9(21)2100860. doi: 10.1002/adom.202100860

  • 加载中
    1. [1]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    2. [2]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(9)
  • Abstract views(596)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return