Citation: Donghui PAN, Yuping XU, Xinyu WANG, Lizhen WANG, Junjie YAN, Dongjian SHI, Min YANG, Mingqing CHEN. Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468 shu

Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging

Figures(9)

  • Melanin nanoparticle (MNP) was modified by polyethylene glycols (PEG), and the resulting compound (PEG-MNP) was obtained. The 68Ga labeled PEG-MNP was prepared by chelating radioactive 68Ga3+ ions with high labeling yield (95.6%±1.9%) and radiochemical purity (>95%). The stability of the labeling compound as well. Then 68Ga-PEG-MNP for simulating PM2.5 particles (particulate matter 2.5, size < 2.5 μm) was obtained through nebulization. After inhaling the nebulized particles, whole-body positron emission tomography (PET) in mice was performed. It revealed that nebulized 68Ga - PEG - MNP diffused from the trachea to the bilateral lobe area of the lungs and retained in the lungs. Quantification of PET images showed that the uptakes of the trachea and lung were (7.20±2.44)%·g-1, (4.46±1.04)%·g-1, (4.91±2.48)%·g-1, (4.71±2.39)%·g-1, (3.34±1.14)%·g-1, and (17.90±3.75)%·g-1, (18.10±4.52)%·g-1, (19.49±6.11)%·g-1, (19.19±2.83)%·g-1, (20.87±2.40)%·g-1 at 0 min, 30 min, 1 h, 2 h, 4 h after administration of the nebulized 68Ga-PEG-MNP, respectively. The results were highly consistent with the findings of ex-vivo radiographic autoradiography.
  • 加载中
    1. [1]

      Louis S, Carlson A K, Suresh A, Rim J, Mays M, Ontaneda D, Dhawan A. Impacts of climate change and air pollution on neurologic health, disease, and practice: A scoping review[J]. Neurology, 2023,100(10):474-483. doi: 10.1212/WNL.0000000000201630

    2. [2]

      Thiankhaw K, Chattipakorn N, Chattipakorn S C. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes[J]. Environ. Pollut., 2022,292118320. doi: 10.1016/j.envpol.2021.118320

    3. [3]

      Chen C, Chen H, van Donkelaar A, Burnett R T, Martin R V, Chen L, Tjepkema M, Kirby-McGregor M, Kaufman J. Using parametric g-computation to estimate the effect of long-term exposure to air pollution on mortality risk and simulate the benefits of hypothetical policies: The Canadian community health survey cohort (2005 to 2015)[J]. Environ. Health Perspect., 2023,131(3)037010. doi: 10.1289/EHP11095

    4. [4]

      Liu Z T, Fang C L, Sun B, Liao X. Governance matters: Urban expansion, environmental regulation, and PM2.5 pollution[J]. Sci. Total Environ., 2023,876162788. doi: 10.1016/j.scitotenv.2023.162788

    5. [5]

      Barzgar F, Sadeghi-Mohammadi S, Aftabi Y, Zarredar H, Shakerkhatibi M, Sarbakhsh P, Gholampour A. Oxidative stress indices induced by industrial and urban PM2.5-bound metals in A549 cells[J]. Sci. Total Environ., 2023,877162726. doi: 10.1016/j.scitotenv.2023.162726

    6. [6]

      Guo C C, Lyu Y, Xia S S, Ren X K, Li Z F, Tian F J, Zheng J P. Organic extracts in PM2.5 are the major triggers to induce ferroptosis in SH-SY5Y cells[J]. Ecotoxicol. Environ. Saf., 2023,249114350. doi: 10.1016/j.ecoenv.2022.114350

    7. [7]

      Song J, Han K Y, Wang Y, Qu R R, Liu Y, Wang S L, Wang L B, An Z, Li J, Wu H, Wu W D. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders[J]. Antioxidants, 2022,11(8)1482. doi: 10.3390/antiox11081482

    8. [8]

      Wang Y X, Zhong Y J, Hou T F, Liao J P, Zhang C, Sun C, Wang G F. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro[J]. Ecotoxicol. Environ. Saf., 2019,178:159-167. doi: 10.1016/j.ecoenv.2019.03.086

    9. [9]

      Zhang Y T, Zhang L K, Chen W W, Zhang Y Y, Wang X M, Dong Y Y, Zhang W X, Lin X X. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway[J]. Toxicol. Lett., 2021,350:62-70. doi: 10.1016/j.toxlet.2021.07.002

    10. [10]

      Zhao C, Pu W, Niu M Y, Wazir J, Song S Y, Wei L L, Li L, Su Z L, Wang H W. Respiratory exposure to PM2.5 soluble extract induced chronic lung injury by disturbing the phagocytosis function of macrophage[J]. Environ. Sci. Pollut. Res., 2022,29(10):13983-13997. doi: 10.1007/s11356-021-16797-9

    11. [11]

      Seifert R, Emmett L, Rowe S P, Herrmann K, Hadaschik B, Calais J, Giesel F L, Reiter R. Maurer T, Heck M, Gafita A, Morris M J, Fanti S, Weber W A, Hope T A, Hofman M S, Fendler W P, Eiber M. Second version of the prostate cancer molecular imaging standardized evaluation framework including response evaluation for clinical trials (PROMISE V2)[J]. Eur. Urol., 2023,83(5):405-412. doi: 10.1016/j.eururo.2023.02.002

    12. [12]

      Jain P, Chaney A M, Carlson M L, Jackson I M, Rao A, James M L. Neuroinflammation PET imaging: Current opinion and future directions[J]. J. Nucl. Med., 2020,61(8):1107-1112. doi: 10.2967/jnumed.119.229443

    13. [13]

      Taralli S, Lorusso M, Perrone E, Perotti G, Zagaria L, Calcagni M L. PET/CT with fibroblast activation protein inhibitors in breast cancer: Diagnostic and theranostic application-A literature review[J]. Cancers, 2023,15(3)908. doi: 10.3390/cancers15030908

    14. [14]

      Pan D H, Sheng J, Wang X Y, Huang Q H, Yan J J, Wang L Z, Yang R L, Shi D J, Xu Y P, Chen M Q. In vivo SPECT imaging of an 131I labeled PM 2.5 mimic substitute[J]. Nucl. Sci. Technol., 2020,31:1-8. doi: 10.1007/s41365-019-0712-1

    15. [15]

      Yang M, Fan Q L, Zhang R P, Cheng K, Yan J J, Pan D H, Ma X W, Lu A, Cheng Z. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging[J]. Biomaterials, 2015,69:30-37. doi: 10.1016/j.biomaterials.2015.08.001

    16. [16]

      Tian L Y, Li X, Ji H X, Yu Q, Yang M J, Guo L P, Huang L P, Gao W Y. Melanin-like nanoparticles: Advances in surface modification and tumour photothermal therapy[J]. J. Nanobiotechnology, 2022,20(1)485. doi: 10.1186/s12951-022-01698-x

    17. [17]

      Jung W S, Lee D Y, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications[J]. Adv. Drug Deliv. Rev., 2022,191114620. doi: 10.1016/j.addr.2022.114620

    18. [18]

      Marcovici I, Coricovac D, Pinzaru I, Macasoi I G, Popescu R, Chioibas R, Zupko I, Dehelean C A. Melanin and melanin-functionalized nanoparticles as promising tools in cancer research-A review[J]. Cancers, 2022,14(7)1838. doi: 10.3390/cancers14071838

    19. [19]

      Fan Q L, Cheng K, Hu X, Ma X W, Zhang R P, Yang M, Lu X M, Xing L, Huang W, Gambhir S S, Cheng Z. Transferring biomarker into molecular probe: Melanin nanoparticle as a naturally active platform for multimodality imaging[J]. J. Am. Chem. Soc., 2014,136:15185-15194. doi: 10.1021/ja505412p

    20. [20]

      Zhou N N, Liu C, Guo X Y, Xu Y P, Gong J F, Qi C S, Zhang X T, Yang M, Zhu H, Shen L, Yang Z. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring[J]. Eur. J. Nucl. Med. Mol. Imaging, 2021,48(1):161-175. doi: 10.1007/s00259-020-04898-5

    21. [21]

      Kendrick J, Francis R J, Hassan G M, Rowshanfarzad P, Ong J S L, Ebert M A. Fully automatic prognostic biomarker extraction from metastatic prostate lesion segmentations in whole-body[68Ga]Ga-PSMA-11 PET/CT images[J]. Eur. J. Nucl. Med. Mol. Imaging, 2022,50(1):67-79. doi: 10.1007/s00259-022-05927-1

    22. [22]

      Fortunati E, Argalia G, Zanoni L, Fanti S, Ambrosini V. New PET radiotracers for the imaging of neuroendocrine neoplasms[J]. Curr. Treat. Options Oncol., 2022,23(5):703-720. doi: 10.1007/s11864-022-00967-z

    23. [23]

      Yan Q S, Zhong J W, Liu Y, Peng S M, Feng P J, Zhong Y H, Hu H Z. Synthesis and preclinical evaluation of a heterodimeric radioligand targeting fibroblast activation protein and integrin-αvβ3[J]. Eur. J. Med. Chem., 2023,251115279. doi: 10.1016/j.ejmech.2023.115279

  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    8. [8]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    9. [9]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    10. [10]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    11. [11]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    12. [12]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    13. [13]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(0)
  • Abstract views(278)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return