Citation: Ruiqing LIU, Wenxiu LIU, Kun XIE, Yiran LIU, Hui CHENG, Xiaoyu WANG, Chenxu TIAN, Xiujing LIN, Xiaomiao FENG. Three-dimensional porous titanium nitride as a highly efficient sulfur host[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441 shu

Three-dimensional porous titanium nitride as a highly efficient sulfur host

Figures(8)

  • A simple, efficient, and scalable one-step high-temperature nitriding method was used to convert titanium dioxide into titanium nitride, meanwhile, the continuous three-dimensional porous network with good electrical conductivity and high porosity was formed under high-temperature sintering. As a highly efficient sulfur host, the continuous three-dimensional porous titanium nitride network not only effectively increases the electron transport path, enhances the electron transfer, and promotes the ion migration, but also strongly restricts the shuttle effect of lithium polysulfides from both physical limiting and chemisorption, and effectively increases the sulfur loading. The as-prepared sulfur cathode with high conductivity, high catalytic activity, and high sulfur loading shows high discharge capacity and excellent cyclic stability.
  • 加载中
    1. [1]

      Liu T F, Zhang Y P, Jiang Z G, Zeng X Q, Ji J P, Li Z H, Gao X H, Sun M H, Lin Z, Ling M, Zheng J C, Liang C D. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy Environ. Sci., 2019,12:1512-1533. doi: 10.1039/C8EE03727B

    2. [2]

      SUN L, XIE J, CHENG F, CHEN R Y, ZHU Q L, JIN Z. Rapid construction of two-dimensional N, S-co-doped porous carbon for realizing high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(6):1189-1198.  

    3. [3]

      Sun L, Liu Y X, Zhang K Q, Cheng F, Jiang R Y, Liu Y Q, Zhu J, Jin Z, Pang H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries[J]. Nano Res., 2022,15:5105-5113. doi: 10.1007/s12274-022-4134-8

    4. [4]

      Tang C, Li B Q, Zhang Q, Zhu L, Wang H F, Shi J L, Wei F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications[J]. Adv. Funct. Mater., 2016,26(4):577-585. doi: 10.1002/adfm.201503726

    5. [5]

      Kang W M, Deng N P, Ju J G, Li Q X, Wu D Y, Ma X M, Li L, Naebe M, Cheng B W. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale, 2016,8:16541-16588. doi: 10.1039/C6NR04923K

    6. [6]

      Chung S H, Manthiram A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells[J]. ChemSusChem, 2014,7(6):1655-1661. doi: 10.1002/cssc.201301287

    7. [7]

      Choi C, Kim S, Kim R, Choi Y, Kim S, Jung H Y, Yang J H, Kim H T. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renew. Sust. Energ. Rev., 2017,69:263-274. doi: 10.1016/j.rser.2016.11.188

    8. [8]

      Hannan M A, Lipu M S H, Hussain A, Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renew. Sust. Energ. Rev., 2017,78:834-854. doi: 10.1016/j.rser.2017.05.001

    9. [9]

      Fan X J, Sun W W, Meng F C, Xing A M, Liu J H. Advanced chemical strategies for lithium-sulfur batteries: A review[J]. Green Energy Environ., 2018,3(1):2-19. doi: 10.1016/j.gee.2017.08.002

    10. [10]

      Bresser D, Passerini S, Scrosati B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries-a review[J]. Chem. Commun., 2013,49:10545-10562. doi: 10.1039/c3cc46131a

    11. [11]

      Li D, Han F, Wang S, Cheng F, Sun Q, Li W C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery[J]. ACS Appl. Mater. Inter., 2013,5(6):2208-2213. doi: 10.1021/am4000535

    12. [12]

      He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes[J]. ACS Nano, 2013,7(12):10920-10930. doi: 10.1021/nn404439r

    13. [13]

      Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angew. Chem. Int. Ed., 2015,54(14):4325-4329. doi: 10.1002/anie.201411109

    14. [14]

      Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017,7(24)1700260. doi: 10.1002/aenm.201700260

    15. [15]

      Sun L, Jiang X W, Jin Z. Interfacial engineering of porous SiOx@C composite anodes toward high-performance lithium-ion batteries[J]. Chem. Eng. J., 2023,474145960. doi: 10.1016/j.cej.2023.145960

    16. [16]

      Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016,45:5605-5634. doi: 10.1039/C5CS00410A

    17. [17]

      Sun Q, Xi B J, Li J Y, Mao H Z, Ma X J, Liang J W, Feng J K, Xiong S L. Nitrogen-doped graphene-supported mixed transition-metal oxide porous particles to confine polysulfides for lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(22)1800595. doi: 10.1002/aenm.201800595

    18. [18]

      Ma F, Liang J S, Wang T Y, Chen X, Fan Y N, Hultman B, Xie H, Han J T, Wu G, Li Q. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale, 2018,10:5634-5641. doi: 10.1039/C7NR09216D

    19. [19]

      Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart C J, Houtarde D, Kaup K, Sommeret H, Brezesinski T, Janek J, Nazar L F. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The "goldilocks" principle[J]. Adv. Energy Mater., 2016,6(6)1501636. doi: 10.1002/aenm.201501636

    20. [20]

      Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nat. Commun., 2016,711203. doi: 10.1038/ncomms11203

    21. [21]

      MA X T, ZHOU X X, LI Y, LIU X X, GUO Q, DUAN D H, LIU S B. Controllable synthesis of N-doped porous carbon decorated with nano CoSe and catalytic effect on polysulfides conversion for Li-S battery[J]. Chinese J. Inorg. Chem., 2023,39(3):443-455.  

    22. [22]

      Sun L, Liu Y X, Xie J, Fan L L, Wu J, Jiang R Y, Jin Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium‐ sulfur batteries[J]. Chem. Eng. J., 2023,451138370. doi: 10.1016/j.cej.2022.138370

    23. [23]

      Liu R Q, Liu W H, Bu Y L, Yang W W, Wang C, Priest C, Liu Z W, Wang Y Z, Chen J Y, Wang Y H, Cheng J, Lin X J, Feng X M, Wu G, Ma Y W, Huang W. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries[J]. ACS Nano, 2020,14:17308-17320. doi: 10.1021/acsnano.0c07415

    24. [24]

      NING D Z, SUN H G. Performance of the inward radial hollow TiN particles as cathodes for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1375-1381.  

    25. [25]

      Li Z H, He Q, Xu X, Zhao Y, Liu X W, Zhou C, Ai D, Xia L X, Mai L Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity[J]. Adv. Mater., 2018,301804089. doi: 10.1002/adma.201804089

    26. [26]

      Li X X, Ding K, Gao B, Li Q W, Li Y Y, Fu J J, Zhang X M, Chu P K, Huo K F. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries[J]. Nano Energy, 2017,40:655-662. doi: 10.1016/j.nanoen.2017.09.018

    27. [27]

      Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017,11:6031-6039. doi: 10.1021/acsnano.7b01945

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(1)
  • Abstract views(375)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return