Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst
- Corresponding author: Limiao CHEN, chenlimiao@csu.edu.cn
Citation:
Yi YANG, Shuang WANG, Wendan WANG, Limiao CHEN. Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(5): 895-906.
doi:
10.11862/CJIC.20230434
Lingampalli S R, Ayyub M M, Rao C N. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748. doi: 10.1021/acsomega.7b00721
Boumis G, Moftakhari H R, Morakhani H. Coevolution of extreme sea levels and sea-level rise under global warming[J]. Earths Future, 2023,11(7)e2023EF003649. doi: 10.1029/2023EF003649
Recent progress on the development of g-C3N4 based composite material and their photocatalytic application of CO2 reductions. J. Environ. Chem. Eng., 2023, 11(3): 109727
He R F, Zhang D D, Xu G R, Li C P, Bai J. Immobilized BiCl3@Bi@g-C3N4 on one-dimensional multi-channel carbon fibers as heterogeneous catalyst for efficient CO2 cycloaddition reaction[J]. Inorg. Chem. Front., 2020,7(15):2783-2790. doi: 10.1039/D0QI00207K
Mohamed A G A, Zhou E B, Zeng Z P, Xie J F, Gao D F, Wang Y B. Asymmetric oxo-bridged ZnPb bimetallic electrocatalysis boosting CO2-to-HCOOH reduction[J]. Adv. Sci., 2021,9(4)2104138.
Ly N H, Vasseghian Y, Joo S W. Plasmonic photocatalysts for enhanced solar hydrogen production: A comprehensive review[J]. Fuel, 2023,344128087. doi: 10.1016/j.fuel.2023.128087
Yang G, Qiu P, Xiong J Y, Zhu X T, Cheng G. Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer[J]. Chinese. Chem. Lett., 2022,33(8):3709-3712. doi: 10.1016/j.cclet.2021.10.047
Hiragond C B, Biswas S, Powar N S, Lee J, Gong E, Kim H, Kin H S, Jung J W, Cho C H, Wong B M, In S L. Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid-gas interface[J]. Carbon Energy, 2023,2386.
Wang C C, Wang X, Liu W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review[J]. Chinese. Chem., 2020,391123601.
Ostad M I, Shahrak M N, Galli F. Photocatalytic carbon dioxide reduction to methanol catalyzed by ZnO, Pt, Au, and Cu nanoparticles decorated zeolitic imidazolate framework-8[J]. J. CO2 Util., 2021,43101373. doi: 10.1016/j.jcou.2020.101373
Li R, Zhang W, Zhou K. Metal-organic-framework-based catalysts for photoreduction of CO2[J]. Adv. Mater., 2018,30(35)1705512. doi: 10.1002/adma.201705512
Wang J P, Yu Y, Cui J Y, Li X R, Zhang Y L, Wang C, Yu X L, Ye J H. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction[J]. Appl. Catal. B-Environ., 2022,301120814. doi: 10.1016/j.apcatb.2021.120814
Karthikeyan C, Arunachalam P, Ramachandran K, Al-Mayouf A M, Karuppuchamy S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications[J]. J. Alloy. Compd., 2020,828154281. doi: 10.1016/j.jallcom.2020.154281
Jourshabani M, Lee B K, Shariatinia Z. From traditional strategies to Z-scheme Configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges[J]. Appl. Catal. B - Environ., 2020,2761119157.
Behera A, Kar A K, Srivastava R. Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: A review[J]. Mater. Horizons, 2021,9(2):607-639.
Nguyen T D, Nguyen V H, Nanda S, Vo D V N, Nguyen V H, Tran T V, Nong L X, Nguyen T T, Bach L G, Abdullah B, Hong S S, Nguyen T V. BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review[J]. Environ. Chem. Lett., 2020,18:1779-1801. doi: 10.1007/s10311-020-01039-0
Ye L Q, Deng Y, Wang L, Xie H Q, Su F Y. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion[J]. ChemSusChem, 2019,12(16):3671-3701. doi: 10.1002/cssc.201901196
Sun M D, Zhang Z M, Shi Q J, Yang J L, Xie M Z, Han W H. Toward photocatalytic hydrogen generation over BiVO4 by controlling particle size[J]. Chinese Chem. Lett., 2021,32(8):2419-2422. doi: 10.1016/j.cclet.2021.01.013
Akrami S, Murakami Y, Watanabe M, Ishihara T, Arita M, Guo Q X, Fuji M, Edalati K. Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst[J]. Chem. Eng. J., 2022,442(2)136209.
Hooda A, Rawat P, Vaya D. Insight into the synthesis and photocatalytic applications of bismuth vanadate-based nanocomposites[J]. Curr. Nanosci., 2023,19(5):697-714. doi: 10.2174/1573413718666220509130006
Geng J G, Gou S X, Zou Z Z, Zhang D, Yan X T, Ning X F, Fan X J. 0D/2D CeO2/BiVO4 S-scheme photocatalyst for production of solar fuels from CO2[J]. Fuel, 2023,333126417. doi: 10.1016/j.fuel.2022.126417
Zalfani M, Hu Z Y, Yu W B, Mahdouani M, Bourguiga R, Wu M, Li Y, Tendeloo G V, Djaoued Y, Su B L. BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants[J]. Appl. Catal. B-Environ., 2017,205:121-132. doi: 10.1016/j.apcatb.2016.12.019
Liapun V, Hanif M B, Sihor M, Vislocha , Pandiaraj S, Unnikrishnan V K, Thirunavukkarasu G K, Edelmannova M F, Reli M, Monfort O, Kocl K, Motola M. Versatile application of BiVO4/TiO2 S-scheme photocatalyst: Photocatalytic CO2 and Cr(Ⅵ) reduction[J]. Chemosphere, 2023,337139397. doi: 10.1016/j.chemosphere.2023.139397
Das R, Sarkar S, Kumar R, Ramarao S D, Cherevotan A, Jasil M, Vinod C P, Singh A K, Peter S C. Noble-metal-free heterojunction photocatalyst for selective CO2 reduction to methane upon induced strain relaxation[J]. ACS Catal., 2022,12(1):687-697. doi: 10.1021/acscatal.1c04587
Zhao W, Feng Y, Huang H B, Zhou P C, Li J, Zhang L L, Dai B L, Xu J M, Zhu F X, Sheng N, Leung D Y C. A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism[J]. Appl. Catal. B-Environ., 2019,245:448-458. doi: 10.1016/j.apcatb.2019.01.001
Mohammed A M, Mohtar S S, Aziz F, Mhamad S A, Aziz M. Review of various strategies to boost the photocatalytic activity of the cuprous oxide-based photocatalyst[J]. J. Environ. Chem. Eng., 2021,9(2)105138. doi: 10.1016/j.jece.2021.105138
Li X, Wan J Q, Ma Y W, Wang Y, Li X T. Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance[J]. Chem. Eng. J., 2021,404127054. doi: 10.1016/j.cej.2020.127054
Zhang Y H, Liu M M, Chen J L, Fang S M, Zhou P P. Recent advances in Cu2O-based composites for photocatalysis: A review[J]. Dalton Trans., 2021,50(12):4091-4111. doi: 10.1039/D0DT04434B
Manuel A P, Shankar K. Hot electrons in TiO2-noble metal nano-heterojunctions: Fundamental science and applications in photocatalysis[J]. Nanomaterials, 2021,11(5)1249. doi: 10.3390/nano11051249
Zhang F, Li Y H, Qi M Y, Tang Z R, Xu Y J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2020,268118380. doi: 10.1016/j.apcatb.2019.118380
Li D, Zhou C J, Shi X L, Zhang Q, Song Q, Zhou Y M, Jiang D L. PtAg alloys as an efficient co-catalyst for CO2 deep photoreduction with H2O: Synergistic effects of Pt and Ag[J]. Appl. Surf. Sci., 2022,598153843. doi: 10.1016/j.apsusc.2022.153843
Belessiotis G V, Kontos A G. Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives[J]. Renew. Energy, 2022,195:497-515. doi: 10.1016/j.renene.2022.06.044
Zhang W H, Mohamed A R, Ong W J. Z-Scheme photocatalytic systems for carbon dioxide reduction: Where are we now?[J]. Angew. Chem. Int. Ed., 2020,59(51):22894-22915. doi: 10.1002/anie.201914925
SONG Y Y, HUANG L, LI Q S, CHEN L M. Preparation of CuO/BiVO4 photocatalyst and research on carbon dioxide reduction[J]. Chem. J. Chinese Universities, 2022,43(6):151-159.
Li M L, Zhang L X, Fan X Q, Zhou Y J, Wu M Y, Shi J L. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J. Mater. Chem. A, 2015,3:5189-5196. doi: 10.1039/C4TA06295G
Zhang Y F, Sun H R, Gao F X, Han Q Z, Li J, Fang M, Cai Y W, Hu B W, Tan X L, Wang X K. Insights into photothermally enhanced photocatalytic U (Ⅵ) extraction by a step-scheme heterojunction[J]. Research, 2022(10)9790320.
Chang J P, Wang C Y, Hsu Y J, Wang C Y. Cu2O/UiO-66-NH2 composite photocatalysts for efficient hydrogen production from ammonia borane hydrolysis[J]. Appl. Catal. A-Gen., 2023,650119005. doi: 10.1016/j.apcata.2022.119005
Subhan M A, Saha P C, Hossain M A, Alam M M, Asiri A M, Rahman M M, Mamun M A, Rifat T P, Raihan T, Azad A K. Photocatalysis, photoinduced enhanced anti-bacterial functions and development of a selective m-tolyl hydrazine sensor based on mixed Ag-NiMn2O4 nanomaterials[J]. RSC Adv., 2020,10:30603-30619. doi: 10.1039/D0RA05008C
Wang W Z, Zhang W W, Meng S, Jia L J, Tan M, Hao C C, Liang Y J, Wang J, Zou B. Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures[J]. Electron. Mater. Lett., 2016,12(6):753-760. doi: 10.1007/s13391-016-6224-9
Duan Z Y, Zhao X J, Wei C W, Chen L M. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion[J]. Appl. Catal. A-Gen., 2020,594117459. doi: 10.1016/j.apcata.2020.117459
Deng Y C, Tang L, Zeng G M, Feng C Y, Dong H R, Wang J J, Feng H P, Liu Y N, Zhou Y Y, Pang Y. Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: Synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation[J]. Environ. Sci.-Nano, 2017,4(7):1494-1511. doi: 10.1039/C7EN00237H
Nogueira A E, Oliveira J A, Silva G, Ribeiro C. Insights into the role of CuO in the CO2 photoreduction process[J]. Sci. Rep., 2019,91316. doi: 10.1038/s41598-018-36683-8
He Z M, Xia Y M, Tang B, Jiang X F, Su J B. Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites[J]. Mater. Lett., 2016,184:148-151. doi: 10.1016/j.matlet.2016.08.020
Rao F, Zhu G, Zhang W, Xu Y, Cao B, Shi X, Hojamberdiev M. Maximizing the formation of reactive oxygen species for deep oxidation of NO via manipulating the oxygen-vacancy defect position on (BiO)2CO3[J]. ACS Catal., 2021,11:7735-7749. doi: 10.1021/acscatal.1c01251
Duan Z Y, Zhao X J, Chen L M. BiVO4/Cu0.4V2O5 composites as a novel Z-scheme photocatalyst for visible-light-driven CO2 conversion[J]. J. Environ. Chem. Eng., 2021,9(1)104628. doi: 10.1016/j.jece.2020.104628
Lee C, Shin K, Lee Y J, Jung C, Lee H M. Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability[J]. Catal. Today, 2018,303:313-319. doi: 10.1016/j.cattod.2017.08.016
Zhang L, Blom D A, Wang H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties[J]. Chem. Mater., 2011,23:4587-459. doi: 10.1021/cm202078t
Li S P, Hasan N, Ma H X, Zhu G Q, Pan L K, Zhang F H, Son M, Liu C L. Hierarchical V2O5/ZnV2O6 nanosheets photocatalyst for CO2 reduction to solar fuels[J]. Chem. Eng. J., 2022,430132863. doi: 10.1016/j.cej.2021.132863
Min S X, Wang F, Jin Z L, Xu J. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation[J]. Superlattice Microstruct., 2014,74:294-307. doi: 10.1016/j.spmi.2014.07.003
Wang Q, Cao X X, Liu T, Wu K J, Deng J, Chen J S, Cai Y J, Shen M Q, Yu C, Wang W K. Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation[J]. Rare Metals, 2023,42(2):484-494. doi: 10.1007/s12598-022-02169-w
Yang G, Qiu P, Xiong J Y, Zhu X T, Cheng G. Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer[J]. Chin. Chem. Lett., 2022,33(8):3709-3712. doi: 10.1016/j.cclet.2021.10.047
Zhang Z Y, Li A, Cao S W, Bosman M, Li S Z, Xue C. Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers[J]. Nanoscale, 2014,6(10):5217-5222. doi: 10.1039/C3NR06562F
Wang J C, Zhang Y, Bai J, Li J H, Zhou C H, Li L, Xie C Y, Zhou T S, Zhu H, Zhou B X. Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO4[J]. J. Colloid Interface Sci., 2023,644:509-518. doi: 10.1016/j.jcis.2023.03.162
Wei Q, Wang Y, Qin H Y, Wu J M, Lu Y F, Chi H Z, Yang F, Zhou B, Yu H L, Liu J B. Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity[J]. Appl. Catal. B-Environ., 2018,227:132-144. doi: 10.1016/j.apcatb.2018.01.003
Zhang L Y, Zhang J J, Yu H G, Yu J G. Emerging S-scheme photocatalyst[J]. Adv. Mater., 2021,33(11)7668.
Li J W, Guo J S, Zhang J X, Sun Z L, Gao J P. Surface etching and photodeposition nanostructures core-shell Cu2O@CuO-Ag with S-scheme heterojunction for high efficiency photocatalysis[J]. Surf. Interfaces, 2022,34102308. doi: 10.1016/j.surfin.2022.102308
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
(a) Survey spectra; (b-f) High-resolution spectra of (b) Bi4f, (c) V2p, (d) Cu2p, (e) Ag3d, and (f) O1s.