Citation: Yue WANG, Zhizhi GU, Jingyi DONG, Jie ZHU, Cunguang LIU, Guohan LI, Meichen LU, Jian HAN, Shengnan CAO, Wei WANG. Effects of kelp-derived carbon dots on embryonic development of zebrafish[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423 shu

Effects of kelp-derived carbon dots on embryonic development of zebrafish

Figures(7)

  • Common algae kelp in aquaculture was utilized as a raw material and synthesized biomass carbon dots through a green, convenient, and efficient hydrothermal method. This approach ensures environmentally friendly and pollution-free production from raw material selection to material synthesis. Zebrafish model organisms were selected as research objects to explore the fluorescence imaging and metabolism of different concentrations of carbon dots during the development of zebrafish embryos. Furthermore, the effect of carbon dots on zebrafish embryo development including hatching rate, heart rate, and survival rate of adult fish were studied to evaluate kelp-derived carbon dots' biosafety.
  • 加载中
    1. [1]

      Abraham J E, Balachandran M. Fluorescent mechanism in zero-dimensional carbon nanomaterials: A review[J]. J. Fluoresc., 2022,32(3):887-906. doi: 10.1007/s10895-022-02915-4

    2. [2]

      Abdella A A, El-Malla S F. Environmentally benign sensing platform for label free detection of Fe3+ and tobramycin using highly fluorescent carbon dots valorized from sweet potato roasting residues[J]. Microchem J., 2023,191108844. doi: 10.1016/j.microc.2023.108844

    3. [3]

      Jansen M, Tisdale W A, Wood V. Nanocrystal phononics[J]. Nat. Mater., 2023,22(2):161-169. doi: 10.1038/s41563-022-01438-4

    4. [4]

      Olla C, Cappai A, Porcu S, Stagi L, Fantauzzi M, Casula M F, Mocci F, Corpino R, Chiriu D, Ricci P C, Carbonaro C M. Exploring the impact of nitrogen doping on the optical properties of carbon dots synthesized from citric acid[J]. Nanomaterials, 2023,13(8)1344. doi: 10.3390/nano13081344

    5. [5]

      Swain T D, Westneat M W, Backman V, Marcelino L A. Phylogenetic analysis of symbiont transmission mechanisms reveal evolutionary patterns in thermotolerance and host specificity that enhance bleaching resistance among vertically transmitted symbiodinium[J]. Eur. J. Phycol., 2018,53:443-459. doi: 10.1080/09670262.2018.1466200

    6. [6]

      Kosionis S G, Kontakos A, Paspalakis E. The effect of the core on the absorption in a hybrid semiconductor quantum dot-metal nanoshell system[J]. Appl. Sci.-Basel, 2023,13(2)1160. doi: 10.3390/app13021160

    7. [7]

      Chen L Y, Zhang Y Y, Duan B H, Gu Z Z, Guo Y T, Wang H F, Duan C Y. Carbon dots prepared in different solvents with controllable structures: Optical properties, cellular imaging and photocatalysis[J]. New J. Chem., 2023,42(3):1690-1697.

    8. [8]

      Lee S G, Kim E H, Ma B C. Monitoring chemical accidents in industrial complexes using tower-installed infrared system for remote chemical detection and long-range video[J]. Appl. Sci., 2023,13(3)1544. doi: 10.3390/app13031544

    9. [9]

      Ravichandiran P, Boguszewska-Czubara A, Masłyk M, Bella A P, Johnson P M, Subramaniyan S A, Shim K S, Yoo D J. A phenoxazine-based fluorescent chemosensor for dual channel detection of Cd2+ and CN- ions and its application to bio-imaging in live cells and zebrafish[J]. Dyes Pigment., 2020,172107828. doi: 10.1016/j.dyepig.2019.107828

    10. [10]

      Xu J, Chen M X, Li M L, Xu S H, Liu H L. Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2023,663131015. doi: 10.1016/j.colsurfa.2023.131015

    11. [11]

      Wang B Y, Cai H J, Waterhouse G I N, Qu X L, Yang B, Lu S Y. Carbon dots in bioimaging, biosensing and therapeutics: A comprehensive review[J]. Small Sci., 2022,2(6)2200012. doi: 10.1002/smsc.202200012

    12. [12]

      Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004,126(40):12736-123737. doi: 10.1021/ja040082h

    13. [13]

      Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J. Am. Chem. Soc., 2006,128(24):7756-7756. doi: 10.1021/ja062677d

    14. [14]

      Hong G S, Diao S O, Antaris A L, Dai H J. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chem. Rev., 2015,115(19):10816-10906. doi: 10.1021/acs.chemrev.5b00008

    15. [15]

      Zoghbi L, Argeiti C, Skliros D, Flemetakis E, Koutinas A, Pateraki C, Ladakis D. Circular PHB production via paraburkholderia sacchari cultures using degradation monomers from PHB-based post-consumer bioplastics as carbon sources[J]. Biochem. Eng. J., 2023,191108808. doi: 10.1016/j.bej.2023.108808

    16. [16]

      Farki N N A N L T, Abdulhameed A S, Surip S N, ALOthman Z A, Jawad A H. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H3PO4- assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption[J]. Int. J. Phytoremediat., 2023,25(12):1567-1578. doi: 10.1080/15226514.2023.2175780

    17. [17]

      Varatharajan P, Banu I B S, Mamat M H, Vasimalai N. Hydrothermal synthesis of orange fluorescent carbon dots and their application in fabrication of warm WLEDs and fluorescent ink[J]. Physica B, 2023,654414703. doi: 10.1016/j.physb.2023.414703

    18. [18]

      Qu H R, Wu X J, Fortner J, Kim M, Wang P, Wang Y H. Reconfiguring organic color centers on the sp2 carbon lattice of single-walled carbon nanotubes[J]. ACS nano, 2022,16(2):2077-2087. doi: 10.1021/acsnano.1c07669

    19. [19]

      Li L L, Ji J, Fei R, Wang C Z, Lu Q, Zhang J R, Jiang L P, Zhu J J. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Adv. Funct. Mater., 2012,22(14):2971-2979. doi: 10.1002/adfm.201200166

    20. [20]

      He H H, Zhou Y F, Yang F Y, Luo X H, Jin Z N A, Li Z F, Jin M. Investigation on synthesis and luminescent properties of red-emitting carbon dots chemically functionalized by branched-polyethylenimine[J]. J. Mater. Sci.-Mater. Electron., 2022,33:23418-23426. doi: 10.1007/s10854-022-09102-y

    21. [21]

      Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging[J]. Angew. Chem. Int. Ed., 2015,54(18):5360-5363. doi: 10.1002/anie.201501193

    22. [22]

      Beker S A, Khudur L S, Krohn C, Cole I, Ball A S. Remediation of groundwater contaminated with dye using carbon dots technology: Ecotoxicological and microbial community responses[J]. J. Environ. Manage., 2022,319115634. doi: 10.1016/j.jenvman.2022.115634

    23. [23]

      Wang Y Q, Li X C, Zhao S J, Wang B H, Song X Z, Xiao J F, Lan M H. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots[J]. Coord. Chem. Rev., 2022,470214703. doi: 10.1016/j.ccr.2022.214703

    24. [24]

      KANG Y C, HUANG Y Y, SUN H Z, ZHENG W L, MA X L, JIANG D L. Nitric acid assisted synthesis of water-soluble green fluorescent carbon dots for pH measurement and Fe3+ ions detection[J]. Chinese J. Inorg. Chem., 2020,36(9):1744-1752.  

    25. [25]

      DONG M H, LI F, XU Y J, DONG Y C, LI W H, KONG C L, CHEN X Y, YANG J Y, SUN J Y. Phosphorescent carbon dots powder: Synthesis and application in anti-background interference latent fingerprint imaging[J]. Chinese J. Inorg. Chem., 2023,39(8):1527-1535.  

    26. [26]

      Tang Y, Yu H Y, Niu X J, Wang Q D, Liu Y Y, Wu Y E. Aptamer-mediated carbon dots as fluorescent signal for ultrasensitive detection of carbendazim in vegetables and fruits[J]. J. Food Compos. Anal., 2022,114104730. doi: 10.1016/j.jfca.2022.104730

    27. [27]

      Yang S T, Cao L, Luo P J G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo[J]. J. Am. Chem. Soc., 2009,131(32):11308-11309. doi: 10.1021/ja904843x

    28. [28]

      Bertotto L B, Catron T R, Tal T. Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish[J]. Neurotoxicology, 2020,76:235-244. doi: 10.1016/j.neuro.2019.11.008

    29. [29]

      Delogu P, Di Trapani V, Golosio B, Longo R, Rigon L, Oliva P. Characterization of charge sharing and fluorescence effects by multiple counts analysis in a Pixie-Ⅱ based detection system[J]. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 2023,1047167874. doi: 10.1016/j.nima.2022.167874

    30. [30]

      Luo M, Xie D, Lin Z Y, Sun H Q, Liu Y Y. Toxicology evaluation of overdose hydroxychloroquine on zebrafish (Danio rerio) embryos[J]. Sci Rep, 2022,12(1)18259. doi: 10.1038/s41598-022-23187-9

    31. [31]

      Jia H R, Zhu Y X, Xu K F, Pan G Y, Liu X Y, Qiao Y, Wu F G. Efficient cell surface labelling of live zebrafish embryos: Wash-free fluorescence imaging for cellular dynamics tracking and nanotoxicity evaluation[J]. Chem. Sci., 2019,10(14):4062-4068. doi: 10.1039/C8SC04884C

  • 加载中
    1. [1]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    2. [2]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    9. [9]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    10. [10]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    11. [11]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    12. [12]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    13. [13]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    14. [14]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    15. [15]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    16. [16]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    17. [17]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    18. [18]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    19. [19]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    20. [20]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

Metrics
  • PDF Downloads(1)
  • Abstract views(275)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return