Citation: Xiufang MA, Pengfei MI, Songsong BAO, Limin ZHENG. Effect of doping on the photodimerization reaction and the modulation of magneto-optical properties of erbium- and neodymium-anthracene complexes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 270-280. doi: 10.11862/CJIC.20230409 shu

Effect of doping on the photodimerization reaction and the modulation of magneto-optical properties of erbium- and neodymium-anthracene complexes

  • Corresponding author: Limin ZHENG, lmzheng@nju.edu.cn
  • Received Date: 27 October 2023
    Revised Date: 6 December 2023

Figures(6)

  • Combining photoreactive anthracene moieties with lanthanide ions, we obtained three new isostructural mononuclear compounds with the formulas Ln(SCN)2(NO3)(depma)2(4-hpy)2 (Ln=Er (1Er), Nd (2Nd), Y (3Y), where depma is 9-diethylphosphonomethylanthracene, and their single molecule magnet and photodimerization behaviors were studied. All contain face-to-face π-π interacted anthracene groups that meet the Schmidt rule for a [4+4] photocycloaddition reaction. 1Er and 2Nd show characteristic near-infrared (NIR) luminescence owing to the efficient energy transfer from the ligand to the lanthanide ion, while 3Y displays excimer emission in the visible region. As a result, only 3Y underwent photocycloaddition reaction under 395 nm UV light irradiation to form [Y(SCN)2(NO3)(depma2)(4-hpy)2]n (3Y-UV). Magnetic studies revealed a field-induced slow relaxation of the magnetization at low temperatures for compounds 1Er and 2Nd, and the dominant relaxation process was the Raman process for 2Nd. After doping Er or Nd into 3Y, we constructed the isomorphic samples Ln0.1Y0.9(SCN)2(NO3)(depma)2(4-hpy)2 (Ln=Er (1Er@Y), Nd (2Nd@Y)). Interestingly, the diluted samples exhibited an incomplete photocycloaddition reaction, accompanied by changes in their luminescence colors from yellow-green to blue. Furthermore, partial photocycloaddition of anthracene groups in 2Nd@Y led to a slight change in the magnetic dynamics, manifested by an increase in the n value of the Raman process from 3.8 (2Nd@Y) to 5.2 (2Nd@Y-UV) which is attributed to the change in its phonon structure.
  • 加载中
    1. [1]

      Aguilà D, Prado Y, Koumousi E S, Mathonière C, Clérac R. Switchable Fe/Co Prussian blue networks and molecular analogues[J]. Chem. Soc. Rev., 2016,45(1):203-224. doi: 10.1039/C5CS00321K

    2. [2]

      Shiga T, Miyasaka H, Yamashita M, Morimoto , Irie M. Copper(Ⅱ)-terbium(Ⅲ)single-molecule magnets linked by photochromic ligands[J]. Dalton Trans., 2011,40(10):2275-2282. doi: 10.1039/c0dt01119c

    3. [3]

      Hojorat M, Sabea H. A, Norel L, Bernot K, Roisnel T, Gendron F, Guennic B. L, Trzop E, Collet E, Long J R, Rigaut S. Hysteresis photomodulation via single-crystal-to-single-crystal isomerization of a photochromic chain of dysprosium single-molecule magnets[J]. J. Am. Chem. Soc., 2020,142(2):931-936. doi: 10.1021/jacs.9b10584

    4. [4]

      Huang X D, Xu Y, Fan K, Bao S S, Kurmoo M, Zheng L M. Reversible SC-SC transformation involving[4+4]cycloaddition of anthracene: a single-ion to single-molecule magnet and yellow-green to blue-white emission[J]. Angew. Chem. -Int. Ed., 2018,57(28):8577-8581. doi: 10.1002/anie.201804102

    5. [5]

      Zou Q, Wang G L, Chen Y Q, Huang X D, Wen G H, Qin M F, Bao S S, Zhang Y Q, Zheng L M. X-ray triggered coordination-bond breakage in dysprosium-organic framework and its impact on magnetic properties[J]. Chem. Eur. J., 2023,29e202203454. doi: 10.1002/chem.202203454

    6. [6]

      Ma X F, Huang X D, Wen G H, Bao S S, Zhang Y Q, Zheng L M. Polymorphism modulates photoluminescence and magnetic dynamics of mononuclear dysprosium-anthracene complexes[J]. Dalton Trans., 2022,51(32):12026-12030. doi: 10.1039/D2DT01710E

    7. [7]

      Woodruff D N, Winpenny R E P, Layfield R A. Lanthanide single-molecule magnets[J]. Chem. Rev., 2013,113(7):5110-5148. doi: 10.1021/cr400018q

    8. [8]

      Guo F S, Bar A K, Layfield R A. Main group chemistry at the interface with molecular magnetism[J]. Chem. Rev., 2019,119(14):8479-8505. doi: 10.1021/acs.chemrev.9b00103

    9. [9]

      Zabala-Lekuona A, Seco J M, Colacio E. Single-molecule magnets: From Mn12-ac to dysprosium metallocenes, a travel in time[J]. Coord. Chem. Rev., 2021,441(15)213984.

    10. [10]

      Liu J L, Chen Y C, Tong M L. Symmetry strategies for high performance lanthanide-based single-molecule magnets[J]. Chem. Soc. Rev., 2018,47(7):2431-2453. doi: 10.1039/C7CS00266A

    11. [11]

      Liu K, Zhang X, Meng X, Shi W, Cheng P, Powell A K. Constraining the coordination geometries of lanthanide centers and magnetic building blocks in frameworks: a new strategy for molecular nanomagnets[J]. Chem. Soc. Rev., 2016,45(9):2423-2439. doi: 10.1039/C5CS00770D

    12. [12]

      Rinehart J D, Long J R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets[J]. Chem. Sci., 2011,2(11)2078. doi: 10.1039/c1sc00513h

    13. [13]

      Bünzli, Piguet. C. Taking advantage of luminescent lanthanide ions[J]. Chem. Soc. Rev., 2005,34(12):1048-1077. doi: 10.1039/b406082m

    14. [14]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    15. [15]

      Eliseevaa S V, Bünzli J C G. Lanthanide luminescence for functional materials and bio-sciences[J]. Chem. Soc. Rev., 2010,39(1):189-227. doi: 10.1039/B905604C

    16. [16]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo-and light-triggered reversible interconversion of dysprosium-anthracene complex and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021,12:929-937. doi: 10.1039/D0SC04851H

    17. [17]

      Huang X D, Jia J G, Kurmoo M, Bao S S, Zheng L M. Interplay of anthracene luminescence and dysprosium magnetism by steric control of photodimerization[J]. Dalton Trans., 2019,48(36):13769-1377. doi: 10.1039/C9DT02854D

    18. [18]

      Huang X D, Ma X F, Zheng L M. Photo-responsive single-molecule magnet showing 0D to 1D single-crystal-to-single-crystal structural transition and hysteresis modulation[J]. Angew. Chem. Int. Ed., 2023,62(15)e202300088. doi: 10.1002/anie.202300088

    19. [19]

      Borah A, Murugavel R. Magnetic relaxation in single-ion magnets formed by less-studied lanthanide ions Ce(Ⅲ), Nd(Ⅲ), Gd(Ⅲ), Ho(Ⅲ), Tm(Ⅱ/Ⅲ) and Yb(Ⅲ)[J]. Coord. Chem. Rev., 2022,45214288.

    20. [20]

      Jiang S D, Wang B W, Sun H L, Wang Z M, Gao S. An organometallic single-ion magnet[J]. J. Am. Chem. Soc., 2011,133:4730-4733. doi: 10.1021/ja200198v

    21. [21]

      Jankowski R, Zakrzewski J J, Zychowicz M, Wang J H, Oki Y, Ohkoshi S, Chorazy S, Sieklucka B. SHG-active NIR-emissive molecular nanomagnets generated in layered neodymium(Ⅲ)-octacyanidometallate(Ⅳ)frameworks[J]. J. Mater. Chem. C, 2021,9(33):10705-10717. doi: 10.1039/D1TC00825K

    22. [22]

      Chen H H, Sun L, Zheng K T, Zhang J P, Ma P T, Wang J P, Niu J Y. Oxalate-bridging Nd-based arsenotungstate with multifunctional NIR-luminescence and magnetic properties[J]. Dalton Trans., 2022,51(26):10257-10265. doi: 10.1039/D2DT01066F

    23. [23]

      Qu Y P, Huang X D, Xu K, Bao S S, Zheng L M. Octahedral lanthanide clusters containing a central PO43- anion: Structures, luminescent, magnetic and relaxometric properties[J]. Dalton Trans., 2023,52:10489-10498. doi: 10.1039/D3DT01542D

    24. [24]

      Koehne I, Lik A, Gerstel M, Bruhn C, Reithmaier J P, Benyoucef M, Pietschnig R. Functionalised phosphonate ester supported lanthanide (Ln=La, Nd, Dy, Er) complexes[J]. Dalton Trans., 2020,49:16683-16692. doi: 10.1039/D0DT03047C

    25. [25]

      Cao D K, Gu Y W, Feng J Q, Cai Z S, Wa rd, M D. Mononuclear lanthanide complexes incorporating an anthracene group: Structural modification, slow magnetic relaxation and multicomponent fluorescence emissions in Dy compounds[J]. Dalton Trans., 2013,42(32):11436-11444. doi: 10.1039/c3dt51176f

    26. [26]

      SAINT, Program for data extraction and reduction. Siemens analytical X-ray instruments, 1994-1996.

    27. [27]

      Krause L, Herbst-Irmer R, Sheldrick G M, Stalke D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination[J]. J. Appl. Cryst., 2015,48:3-10. doi: 10.1107/S1600576714022985

    28. [28]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    29. [29]

      Casanova D, Llunell M, Alemany P, Alvarez S. The rich stereochemistry of eight-vertex polyhedra: A continuous shape measures study[J]. Chem. -Eur. J., 2005,11(5):1479-1494. doi: 10.1002/chem.200400799

    30. [30]

      Yatsimirskii K B, Davidenko N K. Absorption spectra and structure of lanthanide coordination compounds in solution[J]. Coord. Chem. Rev., 1979,27:223-273. doi: 10.1016/S0010-8545(00)82068-8

    31. [31]

      Huang X D, Kurmoo M, Bao S S, Fan K, Yan X, Zhao B H, Zheng L M. Coupling photo-, mechano-and thermochromism and single-ion-magnetism of two mononuclear dysprosium-anthracene phosphonate complexes[J]. Chem. Commun., 2018,54(26):3278-3281. doi: 10.1039/C8CC00220G

    32. [32]

      Nguyen T N, Chow C Y, Eliseeva S V, Trivedi E R, Kampf J W, Martinić I, Petoud S, Pecoraro V L. One-step assembly of visible and near-infrared emitting metallacrown dimers using a bifunctional linker[J]. Chem. -Eur. J., 2018,24(5):1031-1035. doi: 10.1002/chem.201703911

    33. [33]

      Marin R, Brunet G, Murugesu M. Shining new light on multifunctional lanthanide single-molecule magnets[J]. Angew. Chem. Int. Ed., 2021,60(4):1728-1746. doi: 10.1002/anie.201910299

    34. [34]

      Sun G B, Huang X D, Shang T, Yan S, Bao S S, Lu X M, Zhang Y Q, Zheng L M. Polar lanthanide anthracene complexes exhibiting magnetic, luminescent and dielectric properties[J]. Eur. J. Inorg. Chem., 2021:4207-4215.

    35. [35]

      Zou Q, Liu J C, Huang X D, Bao S S, Zheng L M. Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes[J]. Chin. Chem. Lett., 2021,3:1519-1522.

    36. [36]

      Gatteschi D, Sessoli R. Quantum tunneling of magnetization and related phenomena in molecular materials[J]. Angew. Chem., Int. Ed., 2003,42(3):268-297. doi: 10.1002/anie.200390099

    37. [37]

      Zeng D, Ren M, Bao S S, Cai Z S, Xu C, Zheng L M. Polymorphic lanthanide phosphonates showing distinct magnetic behavior[J]. Inorg. Chem., 2016,55(11):5297-5304. doi: 10.1021/acs.inorgchem.6b00280

    38. [38]

      Ma X F, Zeng D, Xu C, Bao S S, Zheng L M. Layered lanthanide phosphonates Ln (2-qpH)(SO4)(H2O)2(Ln=La, Ce, Pr, Nd, Sm): Polymorphism and magnetic properties[J]. Dalton Trans., 2023,52(34):11913-11921. doi: 10.1039/D3DT01698F

    39. [39]

      Cole K S, Cole R H. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. J. Chem. Phys., 1941,9(4):341-351. doi: 10.1063/1.1750906

    40. [40]

      Briganti M, Santanni F, Tesi L, Totti F, Sessoli R, Lunghi A. A complete ab initio view of Orbach and Raman spin-lattice relaxation in a dysprosium coordination compound[J]. J. Am. Chem. Soc., 2021,143:13633-13645. doi: 10.1021/jacs.1c05068

    41. [41]

      Huang X D, Ma X F, Shang T, Zhang Y Q, Zheng L M. Photocontrollable magnetism and photoluminescence in a binuclear dysprosium anthracene complex[J]. Inorg. Chem., 2023,62:1864-1874. doi: 10.1021/acs.inorgchem.2c01210

    42. [42]

      Ma X F, Huang X D, Zheng L M. Tuning the single-molecule magnet and photoluminescence properties of binuclear dysprosium complexes by light[J]. Cryst. Growth Des., 2023,23:1095-1103. doi: 10.1021/acs.cgd.2c01249

  • 加载中
    1. [1]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    2. [2]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    3. [3]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    4. [4]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    9. [9]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    10. [10]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    11. [11]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    12. [12]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    13. [13]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    14. [14]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    15. [15]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    16. [16]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    17. [17]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    18. [18]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    19. [19]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    20. [20]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

Metrics
  • PDF Downloads(3)
  • Abstract views(571)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return