Citation: Jiao CHEN, Yi LI, Yi XIE, Dandan DIAO, Qiang XIAO. Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403 shu

Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes

  • Corresponding author: Qiang XIAO, xiaoq@zjnu.cn
  • Received Date: 25 October 2023
    Revised Date: 16 January 2024

Figures(7)

  • Ultra-thin and b-axis oriented MFI zeolite membranes were fabricated by a vapor phase transport (VPT) method using ethylenediamine-water vapor. The membrane thickness was rationally controlled by converting a deposit layer of MFI nanosheets into a dense zeolite membrane. Scanning electron microscope and X-ray diffraction results revealed that the prepared membrane had a thickness of about 280 nm with a highly b-axis oriented dense structure. The binary gas separation test of butane isomers showed that a permeation rate of n-butane of 1.5×10-7 mol·m-2·s-1·Pa-1 at a separation factor of 14.8 could be achieved for an equimolar n-butane/iso-butane mixtures at 333 K. Na2SiO3, serving as a source of silica and alkalinity, played a crucial role in the secondary growth of MFI zeolite nanosheets. Na2SiO3 facilitated the fusion growth among the MFI zeolite nanosheets in the presence of amine vapor, which improved the orientation and compactness of the membranes.
  • 加载中
    1. [1]

      Saulat H, Yang J H, Wensen S, Raza W, He G H. Fabrication of isomorphously substituted W-MFI membrane with high performance for ethanol separation from water[J]. Chem-Asian J., 2022,17(5)e202101404. doi: 10.1002/asia.202101404

    2. [2]

      Lan J C, Wu H W, Saulat H, Li L Q, Yang J H, Lu J M, Zhang Y. Synthesis of ethanol perm-selective MFI zeolite membranes by binary structure directing agents[J]. J. Membr. Sci., 2020,598117647. doi: 10.1016/j.memsci.2019.117647

    3. [3]

      Mirfendereski S M, Lin J Y S. High-performance MFI zeolite hollow fiber membranes synthesized by double-layer seeding with variable temperature secondary growth[J]. J. Membr. Sci., 2021,618118573. doi: 10.1016/j.memsci.2020.118573

    4. [4]

      Li S, Wang X, Beving D, Chen Z W, Yan Y S. Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film[J]. J. Am. Chem. Soc., 2004,126(13):4122-4123. doi: 10.1021/ja031985y

    5. [5]

      Liu Y, Li Y S, Yang W S. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth[J]. J. Am. Chem. Soc., 2010,132(6):1768-1769. doi: 10.1021/ja909888v

    6. [6]

      Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009,461(7261):246-249. doi: 10.1038/nature08288

    7. [7]

      Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, Mccormick A V, Mkhoyan K A, Tsapatsis M. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011,334(6052):72-75. doi: 10.1126/science.1208891

    8. [8]

      Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W Q, Cho H J, Fetisov E O, Thyagarajan R, Dejaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017,543(7647):690-706. doi: 10.1038/nature21421

    9. [9]

      Cao Z S, Zeng S X, Xu Z, Arvanitis A, Yang S W, Gu X H, Dong J H. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Sci. Adv., 2018,4(11)eaau8634. doi: 10.1126/sciadv.aau8634

    10. [10]

      Zhou M, Hedlund J. Facile preparation of hydrophobic colloidal MFI and CHA crystals and oriented ultrathin films[J]. Angew. Chem. Int. Ed., 2018,57(34):10966-10970. doi: 10.1002/anie.201806502

    11. [11]

      Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci. Adv., 2020,6(7)eaay5993. doi: 10.1126/sciadv.aay5993

    12. [12]

      Lu X F, Yang Y W, Zhang J J, Yan Y S, Wang Z B. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. J. Am. Chem. Soc., 2019,141(7):2916-2919. doi: 10.1021/jacs.9b00018

    13. [13]

      Pham T C T, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angew. Chem. Int. Ed., 2013,52(33):8693-8698. doi: 10.1002/anie.201301766

    14. [14]

      Lai Z P, Tsapatsis M, Nicolich J P. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers[J]. Adv. Funct. Mater., 2004,14(7):716-729. doi: 10.1002/adfm.200400040

    15. [15]

      Banihashemi F, Ibrahim A F M, Babaluo A A, Lin J Y S. Template-free synthesis of highly b-oriented MFI-type zeolite thin films by seeded secondary growth[J]. Angew. Chem. Int. Ed., 2019,58(8):2519-2523. doi: 10.1002/anie.201814248

    16. [16]

      Xu W Y, Dong J X, Li J P, Li J Q, Wu F. A novel method for the preparation of zeolite ZSM-5[J]. Chem. Commun., 1990(10):755-756. doi: 10.1039/c39900000755

    17. [17]

      Matsufuji T, Nishiyama N, Ueyama K, Matsukata M. Permeation characteristics of butane isomers through MFI-type zeolitic membranes[J]. Catal. Today, 2000,56(1):265-273.

    18. [18]

      Han S C, Liu P, Ma Y, Wu Q M, Meng X J, Xiao F S. Calcination-free fabrication of highly b-oriented silicalite-1 zeolite films by secondary growth in the absence of organic structure directing agents[J]. Ind. Eng. Chem. Res., 2021,60(19):7167-7173. doi: 10.1021/acs.iecr.1c01102

    19. [19]

      Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N, Topuz B, Onorato F J, Macosko C W, Mkhoyan K A, Tsapatsis M. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports[J]. Angew. Chem. Int. Ed., 2016,55(25):7184-7187. doi: 10.1002/anie.201601135

    20. [20]

      WU Y Q, ZHENG L K, CHEN Q, YU M T, WANG J G, ZHANG F M, XIAO Q, ZHU W D. Fabrication of zeolite membrane using two-dimensional open-pore MFI nanosheets as building blocks[J]. Chinese J. Inorg. Chem., 2019,35(1):89-94.  

    21. [21]

      Diao D D, Zhang H Y, Wang J G, Xiao Q. Wet-oxidization and exfoliation of non-swollen MCM-22P to dispersible two-dimensional MWW zeolite nanosheets[J]. Microporous Mesoporous Mat., 2022,330111629. doi: 10.1016/j.micromeso.2021.111629

    22. [22]

      Agrawal K V, Topuz B, Pham T C T, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Adv. Mater., 2015,27(21):3243-3249. doi: 10.1002/adma.201405893

    23. [23]

      Zhang F Z, Fuji M, Takahashi M. In situ growth of continuous b-oriented MFI zeolite membranes on porous α-alumina substrates precoated with a mesoporous silica sublayer[J]. Chem. Mater., 2005,17(5):1167-1173. doi: 10.1021/cm048644j

    24. [24]

      MA Y K, CHEN J, LI Y, YANG Y T, ZHANG H Y, LU C S, WU G J, XIAO Q. Gel-less steam-assisted crystallization of platelike MFI crystals for the fabrication of b-oriented zeolite membranes[J]. Chinese J. Inorg. Chem., 2023,39(2):245-254.  

    25. [25]

      Hrabanek P, Zikanova A, Drahokoupil J, Prokopova O, Brabec L, Jirka I, Matejkova M, Fila V, Iglesia O D L, Kocirik M. Combined silica sources to prepare preferentially oriented silicalite-1 layers on various supports[J]. Microporous Mesoporous Mat., 2013,174:154-162. doi: 10.1016/j.micromeso.2013.03.007

    26. [26]

      Nian P, Su M H, Yu T, Wang Z, Zhang B X, Shao X L, Jin X Y, Jiang N Z, Li S, Ma Q. Fabrication of a highly b-oriented MFI-type zeolite film-modified electrode with molecular sieving properties by langmuir-blodgett method[J]. J. Mater. Sci., 2016,51(6):3257-3270. doi: 10.1007/s10853-015-9638-0

    27. [27]

      Wang Z, Zhang H Y, Ma Y K, Diao D D, Lu C S, Xiao Q, Wu G J, Li L D. Transfer printing platelike MFI crystals as seeds for the preparation of silicalite-1 membranes[J]. Microporous Mesoporous Mat., 2022,336111895. doi: 10.1016/j.micromeso.2022.111895

    28. [28]

      Cundy C S, Lowe B M, Sinclair D M. Crystallisation of zeolitic molecular sieves: Direct measurements of the growth behaviour of single crystals as a function of synthesis conditions[J]. Faraday Discuss., 1993,95:235-252. doi: 10.1039/fd9939500235

    29. [29]

      Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates[J]. Angew. Chem. Int. Ed., 2007,46(17):3087-3090. doi: 10.1002/anie.200604367

    30. [30]

      Wang Q, Wu A, Zhong S L, Wang B, Zhou R F. Highly (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. J. Membr. Sci., 2017,540:50-59. doi: 10.1016/j.memsci.2017.06.009

    31. [31]

      Krishna R, Baten J M. Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking[J]. Chem. Eng. J., 2008,140(1/2/3):614-620.

    32. [32]

      Titze T, Chmelik C, Kärger J, Baten J M, Krishna R. Uncommon synergy between adsorption and diffusion of hexane isomer mixtures in MFI zeolite induced by configurational entropy effects[J]. J. Phys. Chem. C, 2014,118(5):2660-2665. doi: 10.1021/jp412526t

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    4. [4]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

Metrics
  • PDF Downloads(0)
  • Abstract views(623)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return