Construction and photocatalytic CO2 reduction performance of S-scheme heterojunction ZnFe2O4/WO3 catalysts
- Corresponding author: Hongchang YAO, yaohongchang@zzu.edu.cn
Citation:
Ping LIU, Chengcai ZHU, Yanyang LI, Hongchang YAO. Construction and photocatalytic CO2 reduction performance of S-scheme heterojunction ZnFe2O4/WO3 catalysts[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(1): 197-208.
doi:
10.11862/CJIC.20230376
Ran J, Jaroniec M, Qiao S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities[J]. Adv. Mater., 2018,30(7)1704649. doi: 10.1002/adma.201704649
Nahar S, Zain M F M, Kadhum A A H, Hasan H A, Hasan M R. Advances in photocatalytic CO2 reduction with water: A review[J]. Materials, 2017,10(6)629. doi: 10.3390/ma10060629
Cokoja M, Bruckmeier C, Rieger B, Herrmann W A, Kuhn F E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?[J]. Angew. Chem. Int. Ed., 2011,50:8510-8537. doi: 10.1002/anie.201102010
Yang K H, Yang Z Z, Zhang C, Gu Y L, Wei J J, Li Z H, Ma C, Yang X, Song K X, Li Y M, Fang Q Z, Zhou J W. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion[J]. Chem. Eng. J., 2021,418129344. doi: 10.1016/j.cej.2021.129344
Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. J. Alloy. Compd., 2021,863158734. doi: 10.1016/j.jallcom.2021.158734
Sun, Younis, Kim, VanishKumar. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO2[J]. Sci. Total Environ., 2023,863160923. doi: 10.1016/j.scitotenv.2022.160923
Chandrasekaran S, Bowen C, Zhang P X, Li Z L, Yuan Q H, Ren X Z, Deng L B. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting[J]. J. Mater. Chem. A, 2018,6:11078-11104. doi: 10.1039/C8TA03669A
Sun Z X, Wang H Q, Wu Z B, Wang L Z. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J]. Catal. Today, 2018,300:160-172. doi: 10.1016/j.cattod.2017.05.033
Wang Q T, Fang Z X, Zhang W, Zhang D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods[J]. Adv. Fiber Mater., 2022,4:342-360. doi: 10.1007/s42765-021-00122-7
Inoue T F A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979,277:637-638. doi: 10.1038/277637a0
Lee D K, Lee D H, Lumley M A, Choi K S. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting[J]. Chem. Soc. Rev., 2019,48:2126-2157. doi: 10.1039/C8CS00761F
Pham T N, Huy T Q, Le A T. Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications[J]. RSC Adv., 2020,10:31622-31661. doi: 10.1039/D0RA05133K
Kim J H, Kim H E, Kim J H, Lee J S. Ferrites: Emerging light absorbers for solar water splitting[J]. J. Mater. Chem. A, 2020,8:9447-9482. doi: 10.1039/D0TA01554G
Sun H, Cai H, Li L L, Yang Y, He P, Zhou K, Han Y, Guan J, Fan X X. Photothermal synergic catalytic degradation of the gaseous organic pollutant isopropanol in oxygen vacancies utilizing ZnFe2O4[J]. J. Chem. Res., 2021,45:773-780. doi: 10.1177/1747519821999335
Chen J, Shen S H, Guo P H, Wu P, Guo L J. Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation[J]. J. Mater. Chem. A, 2014,2:4605-4612. doi: 10.1039/c3ta14811d
Hufnagel A G, Peters K, Müller A, Scheu C, Fattakhova-Rohlfing D, Bein T. Ferrite photoanode nanomorphologies with favorable kinetics for water-splitting[J]. Adv. Funct. Mater., 2016,26:4435-4443. doi: 10.1002/adfm.201600461
Xiao J, Yang W Y, Gao S, Sun C X, Li Q. Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination[J]. J. Mater. Sci. Technol., 2018,34:2331-2336. doi: 10.1016/j.jmst.2018.06.001
Yan Y L, Fang Q J, Pan J K, Yang J, Zhang L L, Zhang W, Zhuang G L, Zhong X, Deng S W, Wang J G. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles[J]. Chem. Eng. J., 2021,408127358. doi: 10.1016/j.cej.2020.127358
Gong E H, Ali S H, Hiragond C B, Kim H S, Powar N S, Kim D Y, Kim H, In S I. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J]. Energy Environ. Sci., 2022,15:880-937. doi: 10.1039/D1EE02714J
Zhang G Q, Wang Z Q, Wu J H. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO2 reduction[J]. Nanoscale, 2021,13:4359-4389. doi: 10.1039/D0NR08442E
Liu Y Q, Yi W J, Li C Q, Du X, Liu Z Y, Yue X Z. Enwrapping ZnIn2S4 on vacancy-rich Nb2O5 nanoplates for enhanced photocatalytic hydrogen evolution[J]. Inorg. Chem. Front., 2024. doi: 10.1039/D3QI02049E
Lin M, Chen H, Zhang Z Z, Wan X X. Engineering interface structures for heterojunction photocatalysts[J]. Phys. Chem. Chem. Phys., 2023,25:4388-4407. doi: 10.1039/D2CP05281D
Marschall R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater., 2014,24:2421-2440. doi: 10.1002/adfm.201303214
Jia Y F, Han H, Luo Y, Wang Q Z, Lee B W, Liu C L. SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly efficient photocatalytic degradation and CO2 conversion[J]. Sep. Purif. Technol., 2023,306122667. doi: 10.1016/j.seppur.2022.122667
Li J D, Wei F, Dong C C, Mu W, Han X J. A Z-scheme ZnFe2O4/RGO/In2O3 hierarchical photocatalyst for efficient CO2 reduction enhancement[J]. J. Mater. Chem. A, 2020,8:6524-6531. doi: 10.1039/C9TA13774B
Mardare C C, Hassel A W. Review on the versatility of tungsten oxide coatings[J]. Phys. Status Solidi A-Appl. Mat., 2019,216(12)1900047. doi: 10.1002/pssa.201900047
Wang Y, Suzuki H, Xie J J, Tomita O, Martin D J, Higashi M, Kong D, Abe R, Tang J W. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems[J]. Chem. Rev., 2018,118:5201-5241. doi: 10.1021/acs.chemrev.7b00286
Das K K, Mansingh S, Sahoo D P, Mohanty R, Parida K. Engineering an oxygen-vacancy-mediated step-scheme charge carrier dynamic coupling WO3-X/ZnFe2O4 heterojunction for robust photo-Fenton-driven levofloxacin detoxification[J]. New J. Chem., 2022,46:5785-5798. doi: 10.1039/D2NJ00067A
Chai B, Liu C, Yan J, Ren Z, Wang Z J. In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity[J]. Appl. Surf. Sci., 2018,448:1-8. doi: 10.1016/j.apsusc.2018.04.116
Ahmadpour N, Sayadi M H, Sobhani S, Hajiani M. A potential natural solar light active photocatalyst using magnetic ZnFe2O4@TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution[J]. J. Clean. Prod., 2020,268122023. doi: 10.1016/j.jclepro.2020.122023
Rawal S B, Kang H J, Won D I, Lee W I. Novel ZnFe2O4/WO3, A highly efficient visible-light photocatalytic system operated by a Z-scheme mechanism[J]. Appl. Catal. B: Environ., 2019,256117856. doi: 10.1016/j.apcatb.2019.117856
Das K K, Sahoo D P, Mansingh S, Parida K. ZnFe2O4@WO3-X/polypyrrole: An efficient ternary photocatalytic system for energy and environmental application[J]. ACS Omega, 2021,6:30401-30418. doi: 10.1021/acsomega.1c03705
Iqbal F, Mumtaz A, Shahabuddin S, Abd Mutalib M I, Shaharun M S, Nguyen T D, Khan M R, Abdullah B. Photocatalytic reduction of CO2 to methanol over ZnFe2O4/TiO2 (p-n) heterojunctions under visible light irradiation[J]. J. Chem. Technol. Biotechnol., 2020,95:2208-2221. doi: 10.1002/jctb.6408
Shi W N, Wang J C, Guo X W, Qiao X, Liu F, Li R L, Zhang W Q, Hou Y X, Han H J. Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction[J]. Nano Res., 2022,15:5962-5969. doi: 10.1007/s12274-022-4271-0
Li B, Sun L, Bian J, Sun N, Sun J, Chen L, Li Z, Jing L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction[J]. Appl. Catal. B: Environ., 2020,270118849. doi: 10.1016/j.apcatb.2020.118849
Lan Y Y, Liu Z F, Guo Z G, Ruan M N, Xin Y. Accelerating the charge separation of ZnFe2O4 nanorods by Cu-Sn ions gradient doping for efficient photoelectrochemical water splitting[J]. J. Colloid Interface Sci., 2019,552:111-121. doi: 10.1016/j.jcis.2019.05.041
Zhang X H, Lin B Y, Li X Y, Wang X, Huang K Z, Chen Z H. MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal[J]. Chem. Eng. J., 2022,430132728. doi: 10.1016/j.cej.2021.132728
Bai S L, Zuo Y, Zhang K W, Zhao Y Y, Luo R X, Li D Q, Chen A F. WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine[J]. Sens. Actuators B-Chem., 2021,347130619. doi: 10.1016/j.snb.2021.130619
Sun Y Y, Wang W Z, Zhang L, Sun S M, Gao E P. Magnetic ZnFe2O4 octahedra: Synthesis and visible light induced photocatalytic activities[J]. Mater. Lett., 2013,98:124-127. doi: 10.1016/j.matlet.2013.02.014
Fu J W, Xu Q L, Low J X, Jiang C J, Yu J G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl. Catal. B: Environ., 2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011
Li C Q, Yi S S, Liu Y, Niu Z L, Yue X Z, Liu Z Y. In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution[J]. Chem. Eng. J., 2021,417129231. doi: 10.1016/j.cej.2021.129231
Zhang X, Hao W, Tsang C S, Liu M, Hwang G S, Lee L Y S. Psesudocubic phase tungsten oxide as a photocatalyst for hydrogen evolution reaction[J]. ACS Appl. Energy Mater., 2019,2:8792-8800. doi: 10.1021/acsaem.9b01790
Xiong J, Song P, Di J, Li H M. Ultrathin structured photocatalysts: A versatile platform for CO2 reduction[J]. Appl. Catal. B: Environ., 2019,256117789. doi: 10.1016/j.apcatb.2019.117789
Long R, Li Y, Liu Y, Chen S M, Zheng X S, Gao C, He C H, Chen N S, Qi Z M, Song L, Jiang J, Zhu J F, Xiong Y J. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4[J]. J. Am. Chem. Soc., 2017,139:4486-4492. doi: 10.1021/jacs.7b00452
Zhu C C, Jiang T, Yang H C, Li Y Y, Li Z J, Yao H C. ZnFe2O4 nanoparticles with iron-rich surfaces for enhanced photocatalytic water vapor splitting[J]. Appl. Surf. Sci., 2023,636157842. doi: 10.1016/j.apsusc.2023.157842
Li C Q, Yi S S, Chen D, Liu Y, Li Y J, Lu S Y, Yue X Z, Liu Z Y. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production[J]. J. Mater. Chem. A, 2019,7:17974-17980. doi: 10.1039/C9TA03701B
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. S-Scheme heterojunction photocatalyst[J]. Chem, 2020,6:1543-1559. doi: 10.1016/j.chempr.2020.06.010
Wang L B, Cheng B, Zhang L Y, Yu J G. In situ irradiated XPS investigation on S-Scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small, 2021,172103447. doi: 10.1002/smll.202103447
Zhou Y P, Jiao W Y, Xie Y, He F, Ling Y, Yang Q, Zhao J S, Ye H, Hou Y. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst[J]. J. Colloid Interface Sci., 2022,608:2213-2223. doi: 10.1016/j.jcis.2021.10.053
Zhang L Y, Zhang J J, Yu H G, Yu J G. Emerging S-scheme photocatalyst[J]. Adv. Mater., 2022,342107668. doi: 10.1002/adma.202107668
Wei Q G, Hao L L, Zhi J, Wen F S. In-situ pressure-induced BiVO4-Bi0.6Y0.4VO4 S-scheme heterojunction for enhanced photocatalytic overall water splitting activity[J]. Chin. J. Catal., 2022,43:316-328. doi: 10.1016/S1872-2067(21)63846-9
Chen Y, Yang W Y, Gao S, Sun C X, Li Q. Synthesis of Bi2MoO6 nanosheets with rich oxygen vacancies by postsynthesis etching treatment for enhanced photocatalytic performance[J]. ACS Appl. Nano Mater., 2018,1:3565-3578. doi: 10.1021/acsanm.8b00719
Dang H F, Qiu Y F, Cheng Z Y, Yang W, Wu H Y, Fan H B, Dong X F. Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application[J]. Ceram. Int., 2016,42:10520-10525. doi: 10.1016/j.ceramint.2016.03.019
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201