Route map for 100% completion of solid-state reactions
- Corresponding author: Lixu LEI, Lixu.lei@seu.edu.cn
Citation:
Lixu LEI. Route map for 100% completion of solid-state reactions[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(1): 182-196.
doi:
10.11862/CJIC.20230375
XIN X Q, ZHENG L M. Solid state synthetic reaction at low heating temperatures[J]. University Chemistry, 1994,9(6):1-7.
Kaupp G. Organic solid-state reactions with 100% yield[J]. Top. Curr. Chem., 2005,254:95-183.
Toda F. Solid-state organic chemistry: Efficient reactions, remarkable yields, and stereoselectivity[J]. Acc. Chem. Res., 1995,28(12):480-486. doi: 10.1021/ar00060a003
YANG C F, LIU W, LIN S Z, XU Z G, CHEN T, WEI T Q, LI B B. Application of the solvent-free method in asymmetric addition reaction of organozinc with aldehyde or ketone[J]. Chinese Journal of Synthetic Chemistry, 2016,24(5):464-468.
Sarkar A, Santra S, Kundu S K, Hajra A, Zyryanov G V, Chupakhin O N, Charushin V N, Majee A. A decade update on solvent and catalyst-free neat organic reactions: A step forward towards sustainability[J]. Green Chem., 2016,18(16):4475-4525. doi: 10.1039/C6GC01279E
LEI L X, ZHOU Y M. Solvent-free or less-solvent solid state reactions[J]. Prog. Chem., 2020,32(8):1158-1171.
JIANG H L, LIU C, LEI L X. Ammonium carnallite prepared from a less-solvent solid state reaction[J]. University Chemistry, 2021,36(12)2102008.
Wang H L, Liu C, Jiang H L, Guo Z L, Zheng Y P, Qi Q, Lei L X. A laboratory experiment on preparation of 3PbO·PbSO4·H2O using less solvent solid state reaction for undergraduate students[J]. Educ. Chem. Eng., 2023,43:92-99. doi: 10.1016/j.ece.2023.02.003
Guo Z L, Ma L, Wang H L, Lai C G, Ji S, Sun J, Zhang D H, Nie L, Lei L X. Less solvent solid state reaction of sodium sulfite and sulfur. Inorg[J]. Chem. Commun., 2023,151110619.
Mason P E, Schewe H C, Buttersack T, Kostal V, Vitek M, McMullen R S, Ali H, Trinter F, Lee C, Neumark D M, Thürmer S, Seidel R, Winter B, Bradforth S E, Jungwirth P. Spectroscopic evidence for a gold-coloured metallic water solution[J]. Nature, 2021,595(7869):673-676. doi: 10.1038/s41586-021-03646-5
Feng D F, Kevan L. Theoretical-models for solvated electrons[J]. Chem. Rev., 1980,80(1):1-20. doi: 10.1021/cr60323a001
HU C J, MA J. An overview of solvated electrons: recent advances[J]. Journal of Radiation Research and Radiation Processing, 2021,39(1):1-14.
Kamyshny A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures[J]. Geochim. Cosmochim. Acta, 2009,73(20):6022-6028. doi: 10.1016/j.gca.2009.07.003
Pavlov D. Lead-acid batteries-science & technology. 2nd ed. Amsterdam: Elsevier, 2017.
Steele I M, Pluth J J, Richardson Jr J W. Crystal structure of tribasic lead sulfate (3PbO·PbSO4·H2O) by X-rays and neutrons: An intermediate phase in the production of lead acid batteries[J]. J. Solid State Chem., 1997,132(1):173-181. doi: 10.1006/jssc.1997.7440
Moseley P T, Rand D A J. Neutron diffraction enables the formula of 'tribasic lead sulfate' to be corrected[J]. J. Energy Storage, 2023,65107423. doi: 10.1016/j.est.2023.107423
WANG H L. Researches on a few less solvent solid state reactions. Nanjing: Southeast University, 2023.
Fogel N, Lin C C, Ford C, Grindstaff W. Behavior of ammonium tetrachlorocobaltate(Ⅱ) on hydration[J]. Inorg. Chem., 2002,3(5):720-726.
Li C X, Lei L X, Xin X Q. Synthesis of M(biN)nCl2 by solid-solid reactions[J]. Chin. Sci. Bull., 1994,39:349-350.
Lei L X, Wang Z X, Xin X Q. The solid state reaction of CuCl2·2H2O and 8-hydroxylquinoline[J]. Thermochim. Acta, 1997,297(1/2):193-197.
Lei L X, Xin X Q. Solid state synthesis of a new compound Cu(HQ)Cl2 and its formation reaction[J]. Thermochim. Acta, 1996,273:61-67. doi: 10.1016/0040-6031(95)02683-5
Lei L X, Xin X Q. Stepwise reaction of CuCl2·2H2O with 2,2'-bipyridyl in the solid state[J]. J. Solid State Chem., 1995,119(2):299-303. doi: 10.1016/0022-4596(95)80044-P
Lei L X, Jing S, Walton R I, Xin X Q, O'Hare D. Investigation of the solid state reaction of FeSO4·7H2O with 1,10-phenanthroline[J]. J. Chem. Soc. Dalton Trans., 2002(18):3477-3481. doi: 10.1039/b205625a
WANG H L, GUO Z L, LIU B Z, WU Z Z, LEI L X. Less solvent solid-state consecutive coordination reaction of copper chloride[J]. Chinese J. Inorg. Chem., 2023,39(8):1536-1544.
Speight J G. Lange's Handbook of Chemistry. 16th ed. New York: MCGRAW-HILL, 2005.
Verduzco-Oliva R, Gutierrez-Uribe J A. Beyond enzyme production: Solid state fermentation (SSF) as an Alternative approach to produce antioxidant polysaccharides[J]. Sustainability, 2020,12(2)495. doi: 10.3390/su12020495
WANG N N, WANG G W. Investigation into condensed-matter organic synthesis under mechanical milling conditions[J]. Prog. Chem., 2020,32(8):1076-1085.
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
(a) From top to bottom, the curves correspond to solvent dosages of 0, 0.01 (overlapped with 0), 0.1, and 1 kg, respectively; The insets are the enlarged diagrams of the both ends; (b) From left to right, the first two and last two increasing segments in blue corresponds to the first twostages and the last two stages of the reaction with solvent dosage of 0.01 kg; The middle continuous S-shaped curve in black corresponds to thesolvent dosage of 1 kg, that is, the Gibbs energy of the solution reaction; The remaining four segments in green corresponds to the starting andending stages of the solvent dosage of 0.1 kg; The straight line at ΔrG=-10 kJ·mol-1 is the Gibbs energy of the reaction of the solution-freesolid-state reaction, which overlaps with the intermediate segments of the less solvent solid chemical reactions.
The circles in a indicate where the equilibrium points are, either the premature or later; All the other parameters are the same as those in Fig. 1.
When the mass of solvent is 1 kg, all the reactants and products are in solution, and it reaches its equilibrium at x=0.72; When the mass of solvent are 0.075 kg, the equilibrium reaches at 0.94; When no solvent is used, it still reaches its equilibrium state at x=0.97, because it produces a solvent for itself.