Citation: Limei CHEN, Mengfei ZHAO, Lin CHEN, Ding LI, Wei LI, Weiye HAN, Hongbin WANG. Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312 shu

Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material

  • Corresponding author: Hongbin WANG, wanghongbin@jlau.edu.cn
  • Received Date: 17 August 2023
    Revised Date: 4 January 2024

Figures(8)

  • Through alkali treatment, the pore structure of diatomite (DIA) was optimized, the porosity was increased, and the paraffin loading was increased. A novel paraffin/alkali-modified DIA/expanded graphite (EG-alDIAP) composite with stable properties was prepared by direct impregnation method. The relationship between structure and properties of the material was studied. The results showed that the paraffin loading of the composite phase change material increased from 47.4% to 61.1%, thereby improving the heat storage performance of the composite material. The addition of expanded graphite (EG) to the modified diatomite improved the heat transfer capacity of the composite material. The addition of mass fraction of 10% EG increased the thermal conductivity by 113% (from 0.276 to 0.589 W·m-1·K-1). With the increase of EG content, the latent heat of the composite phase change material increased slightly, but the chemical compatibility and stability did not change significantly. The paraffin/alkali-modified DIA composite containing 10% expanded graphite had reliable energy storage, good temperature regulation performance and heat storage and release capacity.
  • 加载中
    1. [1]

      Omrany H, Ghaffarianhoseini A, Ghaffarianhoseini A, Raahemifar K, Tookey J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review[J]. Renew. Sust. Energ. Rev., 2016,62:1252-1269. doi: 10.1016/j.rser.2016.04.010

    2. [2]

      Pacheco-Torgal F. High tech startup creation for energy efficient built environment[J]. Renew. Sust. Energ. Rev., 2017,71:618-629. doi: 10.1016/j.rser.2016.12.088

    3. [3]

      Guo X, Zhang S D, Cao J Z. An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material[J]. Compos. Pt. A-Appl. Sci. Manuf., 2018,107:83-93. doi: 10.1016/j.compositesa.2017.12.032

    4. [4]

      Niu M Y, Li X Y, Ouyang J, Yang H M. Lithium orthosilicate with halloysite as silicon source for high temperature CO2 capture[J]. RSC Adv., 2016,6(50):44106-44112. doi: 10.1039/C6RA05004B

    5. [5]

      Ding W J, Yang H M, Ouyang J, Long H M. Modified wollastonite sequestrating CO2 and exploratory application of the carbonation products[J]. RSC Adv., 2016,6(81):78090-78099. doi: 10.1039/C6RA13908F

    6. [6]

      Li M, Wu Z S. A review of intercalation composite phase change material: Preparation, structure and properties[J]. Renew. Sust. Energ. Rev., 2012,16(4):2094-2101. doi: 10.1016/j.rser.2012.01.016

    7. [7]

      Sarı A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energ. Convers. Manage., 2016,117:132-141. doi: 10.1016/j.enconman.2016.02.078

    8. [8]

      Zhou X F, Xiao H N, Feng J, Zhang C R, Jiang Y G. Preparation and thermal properties of paraffin/porous silica ceramic composite[J]. Compos. Sci. Technol., 2009,69(7/8):1246-1249.

    9. [9]

      Chen C Z, Liu W M, Wang H W, Peng K L. Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage[J]. Appl. Energy, 2015,152:198-206. doi: 10.1016/j.apenergy.2014.12.004

    10. [10]

      Da Cunha J P, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials-A review[J]. Appl. Energy, 2016,177:227-238. doi: 10.1016/j.apenergy.2016.05.097

    11. [11]

      Zheng H B, Song C, Bao C, Liu X L, Xuan Y M, Li Y L, Ding Y L. Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage[J]. Sol. Energy Mater. Sol. Cells, 2020,207:110364-110364. doi: 10.1016/j.solmat.2019.110364

    12. [12]

      Milián Y E, Gutierrez A, Grageda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J]. Renew. Sust. Energ. Rev., 2017,73:983-999. doi: 10.1016/j.rser.2017.01.159

    13. [13]

      Yang Z W, Li J H, Luan X Z, Song S. Effects of acid leaching and organic intercalation on the thermophysical properties of paraffin/expanded vermiculite composite phase change materials[J]. Appl. Clay Sci., 2020,196105754. doi: 10.1016/j.clay.2020.105754

    14. [14]

      HU D H, XU X Y, LIN K, LI Q. Study on heat conductivity of paraffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021,42(9):2414-2418.  

    15. [15]

      LIU Z H, ZHANG X S, WANG C L, ZHANG M X. Experimental study on melting performance of paraffin and paraffin/expanded graphite[J]. CIESC Journal, 2020,71(7):3362-3371.  

    16. [16]

      Tian G H, Lv H L, Huang J E, Liu P, Feng W. Preparation and thermal features of composite paraffin room temperature phase change mortar[J]. J. Test. Eval., 2019,47(1):511-524. doi: 10.1520/JTE20160513

    17. [17]

      LIN K, XU X Y, LI Q, HU D H. Study on thermal conductivity of paraffin‑expanded graphite composite phase change materials[J]. CIESC Journal, 2021,72(8):4425-4432.  

    18. [18]

      Qian T T, Li J H, Deng Y. Pore structure modified diatomite-supported PEG composites for thermal energy storage[J]. Sci. Rep., 2016,6(1)32392. doi: 10.1038/srep32392

    19. [19]

      Lv P Z, Liu C Z, Rao Z H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials[J]. Appl. Energy, 2016,182:475-487. doi: 10.1016/j.apenergy.2016.08.147

    20. [20]

      Korunic Z. Diatomaceous earths, a group of natural insecticides[J]. Stored Prod. Res., 1998,34(3/4):87-97.

    21. [21]

      Luo Y, Xiong S Y, Huang J T, Zhang F, Li C C, Min Y G, Peng R T, Liu Y D. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage[J]. Sol. Energy Mater. Sol. Cells, 2021,231111300. doi: 10.1016/j.solmat.2021.111300

    22. [22]

      MENG D, WANG A Q, YANG J. Preparation, encapsulation and characterization of paraffin/expanded perlite form-stable composite phase change materials[J]. Journal of Functional Materials, 2019,50(11):11194-11198.  

    23. [23]

      Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Sol. Energy Mater. Sol. Cells, 2011,95(7):1647-1653. doi: 10.1016/j.solmat.2011.01.022

    24. [24]

      Xu B W, Li Z J. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Appl. Energy, 2013,105:229-237. doi: 10.1016/j.apenergy.2013.01.005

    25. [25]

      Nomura T, Okinaka N, Akiyama T. Impregnation of porous material with phase change material for thermal energy storage[J]. Mater. Chem. Phys., 2009,115(2/3):846-850.

    26. [26]

      Sarı A, Biçer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs[J]. Sol. Energy Mater. Sol. Cells, 2012,101:114-122. doi: 10.1016/j.solmat.2012.02.026

    27. [27]

      GUO X Q, DENG X C, ZHU C L, FU X, WANG R R, MA W X, FAN J, ZUO F T, QING B J. Preparation and adsorption properties for Cs+ of modified diatomite-supported copper hexacyanoferrate composite[J]. Chinese J. Inorg. Chem., 2023,39(5):815-829.  

    28. [28]

      Zhang G L, Cai D Q, Wang M, Zhang C L, Zhang J, Wu Z Y. Microstructural modification of diatomite by acid treatment, high-speed shear, and ultrasound[J]. Microporous Mesoporous Mat., 2013,165:106-112. doi: 10.1016/j.micromeso.2012.08.005

    29. [29]

      Cao L, Tang F, Fang G Y. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials[J]. Sol. Energy Mater. Sol. Cells, 2014,123:183-188. doi: 10.1016/j.solmat.2014.01.023

    30. [30]

      LI G, OUYANG T, JIANG C, CHEN Y B. Preparation and characterization of paraffin phase change compositesreinforced by carbon fiber-graphite nanoplatelets network[J]. Acta Materiae Compositae Sinica, 2020,37(5):1130-1137.  

    31. [31]

      Wang J F, Xie H Q, Xin Z, Li Y, Yin C. Investigation on thermal properties of heat storage composites containing carbon fibers[J]. J. Appl. Phys., 2011,110(9)094302. doi: 10.1063/1.3656991

    32. [32]

      Yin Z Y, Huang Z H, Wen R L, Zhang X G, Tan B, Liu Y G, Wu X W, Fang M H. Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses[J]. RSC Adv., 2016,6(97):95085-95091. doi: 10.1039/C6RA13758J

    33. [33]

      HU W S, ZHANG S J, ZHANG C J, LUO J H, YANG F, SUN P F. Experiment on heat storage and release characteristics of GR/paraffin composite phasechange materials based on solar energy heating[J]. New Chemical Materials, 2020,48(3):119-124.  

    34. [34]

      GAO R, WANG Z Y, WANG L, CHEN P, LIU S, MA Z P, SHAO G J. Ni2P nanosheets on graphene as sulfur-based composite cathode material for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(4):685-694.  

    35. [35]

      Cheng F, Wen R L, Huang Z H, Fang M H, Liu Y G, Wu X W, Min X. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage[J]. Appl. Therm. Eng., 2017,120:107-114. doi: 10.1016/j.applthermaleng.2017.03.129

    36. [36]

      Tang X H, Zhu B, Xu M H, Zhang W, Yang Z, Zhang Y F, Yin G L, He D N, Wei H, Zhai X Q. Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage[J]. Energy Build., 2015,109:353-360. doi: 10.1016/j.enbuild.2015.09.074

    37. [37]

      ZHAO J G, GUO Q G, LIU L, WEI X H, ZHANG J X. Polyethylene glycol/expanded graphite phase change composites for thermal storage[J]. Modern Chemical Industry, 2008,28(9):46-47.  

    38. [38]

      WANG J J, XU X L, LIANG K Y, WANG G. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: A review[J]. Chinese Journal of Engineering, 2020,42(1):26-38.  

    39. [39]

      Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage[J]. Chem. Eng. J., 2013,231:214-219. doi: 10.1016/j.cej.2013.07.008

    40. [40]

      Wen R L, Zhang X G, Huang Z H, Fang M H, Liu Y G, Wu X W, Min X, Gao W, Huang S F. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage[J]. Sol. Energy Mater. Sol. Cells, 2018,178:273-279. doi: 10.1016/j.solmat.2018.01.032

    41. [41]

      Karakassides M A, Gournis D, Petridis D. An infrared reflectance study of Si—O vibrations in thermally treated alkali-saturated montmorillonites[J]. Clay Min., 1999,34(3):429-438. doi: 10.1180/000985599546334

    42. [42]

      Li C C, Wang M F, Xie B S, Ma H, Chen J. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage[J]. Renew. Energy, 2020,147:265-274. doi: 10.1016/j.renene.2019.09.001

    43. [43]

      Yang D, Shi S L, Xiong L, Guo H J, Zhang H R, Chen X F, Wang C, Chen X D. Paraffin/palygorskite composite phase change materials for thermal energy storage[J]. Sol. Energy Mater. Sol. Cell, 2016,144:228-234. doi: 10.1016/j.solmat.2015.09.002

    44. [44]

      Atinafu D G, Dong W J, Huang X B, Gao H Y, Wang J J, Yang M, Wang G. One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity[J]. Sol. Energy Mater. Sol. Cells, 2018,179:392-400. doi: 10.1016/j.solmat.2018.01.035

    45. [45]

      YAN J S, HAN X Y, DANG Z H, LI J G, HE X M. Preparation and performance of paraffin/expanded graphite/graphene composite phase change heat storage material[J]. Chem. J. Chinese Universities, 2022,43(6):326-332.  

    46. [46]

      Fang G Y, Li H, Chen Z, Liu X. Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials[J]. Sol. Energy Mater. Sol. Cells, 2011,95(7):1875-1881. doi: 10.1016/j.solmat.2011.02.010

    47. [47]

      Zhong L M, Zhang X W, Luan Y, Wang G, Feng Y H, Feng D L. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Sol. Energy, 2014,107:63-73. doi: 10.1016/j.solener.2014.05.019

    48. [48]

      Feng L L, Zhao W, Zheng J, Frisoc S, Song P, Li X G. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41)[J]. Sol. Energy Mater. Sol. Cells, 2011,95(12):3550-3556. doi: 10.1016/j.solmat.2011.08.020

    49. [49]

      Li X Y, Sanjayan J G, Wilson J L. Fabrication and stability of form-stable diatomite/paraffin phase change material composites[J]. Energy Build., 2014,76:284-294. doi: 10.1016/j.enbuild.2014.02.082

    50. [50]

      Alkan C, Sari A. Fatty acid/poly (methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Sol. Energy, 2008,82(2):118-124. doi: 10.1016/j.solener.2007.07.001

    51. [51]

      Wang Q, Zhang J, Da J, Zhao H, Ran K. Study on the thermal properties of paraffin/expansion perlite composite phase change mortar[J]. Adv. Mater. Res., 2012,374:1274-1277.

    52. [52]

      Yang X J, Yuan Y P, Zhang N, Cao X L, Liu C. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage[J]. Sol. Energy, 2014,99:259-266. doi: 10.1016/j.solener.2013.11.021

    53. [53]

      Lu Z Y, Xu B W, Zhang J R, Zhu Y, Sun G X, Li Z J. Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material[J]. Sol. Energy, 2014,108:460-466. doi: 10.1016/j.solener.2014.08.008

    54. [54]

      LIN Z Q, ZHAO Z X, SONG J L, LIU Z J, TANG Z F. Preparation and heat transfer and storage properties of low melting point chloride/expanded graphite composites[J]. Journal of Functional Materials, 2023,54(10):10180-10185.  

    55. [55]

      Yang Z W, Li J H, Luan X Z, Song S. Effects of acid leaching and organic intercalation on the thermophysical properties of paraffin/expanded vermiculite composite phase change materials[J]. Appl. Clay Sci., 2020,196105754. doi: 10.1016/j.clay.2020.105754

    56. [56]

      Li C C, Zhang B, Xie B S, Zhao X B, Chen J, Chen Z S, Long Y. Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater[J]. Sust. Cities Soc., 2019,44:458-464. doi: 10.1016/j.scs.2018.10.041

    57. [57]

      Jiang F Y, Wang X D, Wu D Z. Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials[J]. Appl. Energy, 2014,134:456-468. doi: 10.1016/j.apenergy.2014.08.061

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(8)
  • Abstract views(953)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return