Citation: Guimin ZHANG, Wenjuan MA, Wenqiang DING, Zhengyi FU. Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293 shu

Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres

  • Corresponding author: Zhengyi FU, zyfu@whut.edu.cn
  • Received Date: 4 August 2023
    Revised Date: 9 March 2024

Figures(8)

  • The paper reports the synthesis of AgPd bimetallic hollow nanospheres at 70℃ by galvanic replacement reaction (GRR) coupled with a co-reduction method using Ag nanoparticles as sacrificial templates, H2PdCl4 as precursor, ascorbic acid as reductant, and polyvinyl pyrrolidone as capping agent. To characterize the structures, compositions, and morphologies of the products prepared with different H2PdCl4 solution volumes, UV-Vis spectra, powder X-ray diffraction, and transmission electron microscope coupled with an energy dispersive spectrometer were used. The results indicate the interior caves of nanospheres gradually become big and densities decrease with the increase of volume of the H2PdCl4 solution. Simultaneously, the sizes of nanoparticles increase. When the volume of the H2PdCl4 solution was increased to 120 μL, we synthesized the uniform hollow AgPd bimetallic nanospheres with outer sizes of about 25 nm and wall thicknesses of 2-3 nm. The catalytic activities of Ag, Pd, and AgPd bimetals were evaluated using the catalytic hydrogenation of 4-nitrophenol by an excess of NaBH4 at room temperature. The AgPd bimetals showed superior catalytic activities than pure Ag and Pd due to electron transfer from Ag to Pd. The reaction rate constant of AgPd-120 nano hollow sphere (120 μL of H2PdCl4 solution) as a catalyst was the highest, which was 24.0 times that of pure Ag nanospheres of the same size and 14.7 times that of pure Pd nanocubes
  • 加载中
    1. [1]

      Kim J, Han S, Kim Y. Effect of a roughness factor on electrochemical reduction of 4-nitrophenol using porous gold[J]. Korean J. Chem. Eng., 2017,34(9):2498-2501. doi: 10.1007/s11814-017-0137-7

    2. [2]

      Moon H, Kim Y. Photothermal-mediated catalytic reduction of 4-nitrophenol using poly (N-isopropylacrylamide-acrylamide) and hollow gold nanoparticles[J]. ACS Appl. Polym. Mater., 2021,3:2768-2775. doi: 10.1021/acsapm.1c00301

    3. [3]

      Marimuthu M, Li H H, Chen Q S. Facile ultrasonic synthesis of silver-based bimetal nanoparticles for efficient catalytic reduction of 4-nitrophenol[J]. J. Mol. Liq., 2021,333115963. doi: 10.1016/j.molliq.2021.115963

    4. [4]

      GU Y, LIU G T, ZOU C H, ZHANG Z, LIU J, SUN M, CHENG G, YU L. Ultrasonic synthesis and application in catalytic 4-nitrophenols reduction of Au/Fe3O4[J]. Chinese J. Inorg. Chem., 2017,33(5):787-795. doi: 10.11862/CJIC.2017.102

    5. [5]

      XIAN L, SU B Q, FENG Y X, CAO N J, SHENG L, MA J, XI B. Visible light-assisted synthesis of platinum nanoparticles for catalytic reduction reaction of p-nitrophenol[J]. Chinese J. Inorg. Chem., 2021,37(12):2260-2266. doi: 10.11862/CJIC.2021.227

    6. [6]

      Han Z S, Dong L, Zhang J, Cui T M, Chen S F, Ma G L, Guo X L, Wang L G. Green synthesis of palladium nanoparticles using lentinan for catalytic activity and biological applications[J]. RSC Adv., 2019,9:38265-38270. doi: 10.1039/C9RA08051A

    7. [7]

      Tan X F, Qin J, Li Y, Zeng Y T, Zheng G X, Feng F, Li H. Self-supporting hierarchical PdCu aerogels for enhanced catalytic reduction of 4-nitrophenol[J]. J. Hazard. Mater., 2020,397122786. doi: 10.1016/j.jhazmat.2020.122786

    8. [8]

      Liang M, Zhang G, He Y, Hou P, Li M, Lv B. Lysimachia christinae polysaccharide mediated facile synthesis of gold-silver alloy nanoparticles for catalytic reduction of 4-nitrophenol[J]. IOP Conference Series-Earth and Environmental Science, 2019,330042053. doi: 10.1088/1755-1315/330/4/042053

    9. [9]

      Kang Y S, Jung J Y, Choi D, Sohn Y, Lee S H, Lee K S, Kim N D, Kim P, Yoo S J. Formation mechanism and gram-scale production of PtNi hollow nanoparticles for oxygen electrocatalysis through in situ galvanic displacement reaction[J]. ACS Appl. Mater. Interfaces, 2020,12:16286-16297. doi: 10.1021/acsami.9b22615

    10. [10]

      Li J M, Sun X J, Qin D. Ag-enriched Ag-Pd bimetallic nanoframes and their catalytic properties[J]. ChemNanoMat, 2016,2:494-499. doi: 10.1002/cnma.201600080

    11. [11]

      WANG R R, TANG J P, ZHANG R J, LI W, ZHAO X L, CHEN C, LIN D H. Progress in the preparation of palladium-gold bimetallic catalysts and their application in fuel cells[J]. Materials Review., 2023,37(Z1)22100081.  

    12. [12]

      Feng J, Yin Y D. Self-templating approaches to hollow nanostructures[J]. Adv. Mater., 2019,311802349. doi: 10.1002/adma.201802349

    13. [13]

      YE Z Y, YIN Y D. Etching based hollowing of nanostructures[J]. Chem. J. Chinese Universities, 2023,44(1):11-22.  

    14. [14]

      Gao Z, Ye H, Wang Q, Kim M J, Tang D, Xi Z, Wei Z, Shao S, Xia X. Template regeneration in galvanic replacement: A route to highly diverse hollow nanostructures[J]. ACS Nano, 2020,14:791-801. doi: 10.1021/acsnano.9b07781

    15. [15]

      JIAO C P, HUANG Z L, ZHANG H J, ZHANG S W. Bimetallic nanocatalysts synthesized via galvanic replacement reaction[J]. Prog. Chem., 2015,27(5):472-481.  

    16. [16]

      Zhang H, Jin M S, Wang J G, Li W Y, Camargo P H C, Kim M J, Yang D R, Xie Z X, Xia Y N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction[J]. J. Am. Chem. Soc., 2011,133:6078-6089. doi: 10.1021/ja201156s

    17. [17]

      Kim M H, Lu X M, Wiley B, Lee E P, Xia Y N. Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4[J]. J. Phys, Chem. C, 2008,112:7872-7876. doi: 10.1021/jp711662f

    18. [18]

      Zhang H, Jin M S, Liu H Y, Wang J G, Kim M J, Yang D R, Xie Z X, Liu J Y, Xia Y N. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen[J]. ACS Nano, 2011,5(10):8212-8222. doi: 10.1021/nn202896q

    19. [19]

      Jing H, Wang H. Structural evolution of Ag-Pd bimetallic nanoparticles through controlled galvanic replacement: Effects of mild reducing agents[J]. Chem. Mater., 2015,27(6):2172-2180. doi: 10.1021/acs.chemmater.5b00199

    20. [20]

      Suwannarat K, Thongthai K, Ananta S, Srisombat L. Synthesis of hollow trimetallic Ag/Au/Pd nanoparticles for reduction of 4-nitrophenol[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2018,540:73-80. doi: 10.1016/j.colsurfa.2017.12.046

    21. [21]

      El-Sheikh S M, Ismail A A, Jafar F, Al-Sharab J F. Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica[J]. New J. Chem., 2013,37:2399-2406. doi: 10.1039/c3nj00138e

    22. [22]

      Samanta S, Pyne S, Sarkar P, Sahoo G P, Bar H, Bhui D K, Misra A. Synthesis of silver nanostructures of varying morphologies through seed mediated growth approach[J]. J. Mol. Liq., 2010,153:170-173. doi: 10.1016/j.molliq.2010.02.008

    23. [23]

      Zhang G M, Feng J, Wang S, Xu B Z, Ding W Q, Wang W M, Fu Z Y. Stable Pd@Cu core-shell nanocubes with finely tuned sizes for the reduction of nitroaromatics[J]. ACS Appl. Nano Mater., 2019,2:4584-4593. doi: 10.1021/acsanm.9b00946

    24. [24]

      Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy[J]. RSC Adv., 2014,4(8):3974-3983. doi: 10.1039/C3RA44507K

    25. [25]

      Huang J F, Vongehr S, Tang S C, Lu H M, Meng X K. Highly catalytic Pd-Ag bimetallic dendrites[J]. J. Phys. Chem. C, 2010,114:15005-15010. doi: 10.1021/jp104675d

    26. [26]

      Betancourt L E, Rojas-Pérez A, Orozco I, Frenkel A I, Li Y Y, Sasaki K, Senanayake S D, Cabrera C R. Enhancing ORR performance of bimetallic PdAg electrocatalysts by designing interactions between Pd and Ag[J]. ACS Appl. Energy Mater., 2020,3:2342-2349.

  • 加载中
    1. [1]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

Metrics
  • PDF Downloads(5)
  • Abstract views(625)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return