La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance
- Corresponding author: Yanyan FENG, feng1988glut@163.com
Citation:
Wen YANG, Didi WANG, Ziyi HUANG, Yaping ZHOU, Yanyan FENG. La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(3): 561-570.
doi:
10.11862/CJIC.20230276
SHI Y B, ZHANG G Q, SUN Y C, ZHENG H Y, LI Z, SHANGGUAN J, MI J, LIU S J, SHI P Z. KIT-6 supported CeO2 for catalytic synthesis of dimethyl carbonate from CO2 and methanol[J]. Chinese J. Inorg. Chem., 2021,37(6):1004-1016.
Li Z Y, Wu D, Gong W B, Li J Y, Sang S K, Liu H J, Long R, Xiong Y J. Highly efficient photocatalytic CO2 methanation over Ru-doped TiO2 with tunable oxygen vacancies[J]. Chin. J. Struct. Chem., 2022,41:2212043-2212050.
XU B J. Reversible oxidation-reduction process in a palladium-iron intermetallic promotes and stabilizes CO2 methanation[J]. Acta Phys.-Chim. Sin., 2021,37(5)2010066.
Gong J, Li J M, Liu C, Wei F Y, Yin J L, Li W Z, Xiao L, Wang G W, Lu J T, Zhuang L. Guanine-regulated proton transfer enhances CO2-to-CH4 selectivity over copper electrode[J]. Chinese J. Catal., 2022,43(12):3101-3106. doi: 10.1016/S1872-2067(22)64113-5
Wang W, Wang S P, Ma X B, Gong J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem. Soc. Rev., 2011,40(7):3703-3727. doi: 10.1039/c1cs15008a
Garbarino G, Bellotti D, Riani P, Magistri L, Busca G. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability[J]. Int. J. Hydrogen Energy, 2015,40(30):9171-9182. doi: 10.1016/j.ijhydene.2015.05.059
Fan Z G, Sun K H, Rui N, Zhao B R, Liu C J. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition[J]. J. Energy Chem., 2015,24(5):655-659. doi: 10.1016/j.jechem.2015.09.004
Swalus C, Jacquemin M, Poleunis C, Bertrand P, Ruiz P. CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: "In situ" supply of hydrogen by Ni/activated carbon catalyst[J]. Appl. Catal. B-Environ., 2012,125:41-50. doi: 10.1016/j.apcatb.2012.05.019
Sakpal T, Lefferts L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. J. Catal., 2018,367:171-180. doi: 10.1016/j.jcat.2018.08.027
López-Rodríguez S, Davó-Quiñonero A, Bailón-García E, Lozano-Castello D, Bueno-Lopez A. Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation[J]. Mol. Catal., 2021,515111911. doi: 10.1016/j.mcat.2021.111911
Ischenko O V, Dyachenko A G, Saldan I, Lisnyak V V, Diyuk V E, Vakaliuk A A, Yatsymyrskyi A V, Gaidai S V, Zakharova T M, Makota O, Ericsson T, Häggström L. Methanation of CO2 on bulk Co-Fe catalysts[J]. Int. J. Hydrogen Energy, 2021,46(76):37860-37871. doi: 10.1016/j.ijhydene.2021.09.034
Yin L T, Chen X Y, Sun M H, Zhao B, Chen J J, Zhang Q L, Ning P. Insight into the role of Fe on catalytic performance over the hydrotalcite-derived Ni-based catalysts for CO2 methanation reaction[J]. Int. J. Hydrogen Energy, 2022,47(11):7139-7149. doi: 10.1016/j.ijhydene.2021.12.057
Miao C, Shang K X, Liang L X. Efficient and stable Ni/ZSM-5@MCM-41 catalyst for CO2 methanation[J]. ACS Sustain. Chem. Eng., 2022,10(38):12771-12782. doi: 10.1021/acssuschemeng.2c03693
Zhang D Y, Zhang J B, Li R, Chen H Y, Hao Q Q, Bai Y H, Shang J X, Zhang L, Ma X X. Coal char supported Ni catalysts prepared for CO2 methanation by hydrogenation[J]. Int. J. Hydrogen Energy, 2023,48(39):14608-14621. doi: 10.1016/j.ijhydene.2023.01.042
Panagiotopoulou P, Kondarides D I, Verykios X E. Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst[J]. Catal. Today, 2012,181(1):138-147. doi: 10.1016/j.cattod.2011.05.030
Kirchner J, Anolleck J K, Lösch H, Kureti S. Methanation of CO2 on iron based catalysts[J]. Appl. Catal. B-Environ., 2018,223:47-59. doi: 10.1016/j.apcatb.2017.06.025
Gonçalves L P L, Mielby J, Soares O S G P, Sousa J P S, Petrovykh D Y, Lebedev O I, Pereira M F R, Kegnæs S, Koleńko Y V. In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS[J]. Appl. Catal. B-Environ., 2022,312121376. doi: 10.1016/j.apcatb.2022.121376
Nagase H, Naito R, Tada S, Kikuchi R, Fujiwara K, Nishijima M, Honma T. Ru nanoparticles supported on amorphous ZrO2 for CO2 methanation[J]. Catal. Sci. Technol., 2020,10(14):4522-4531. doi: 10.1039/D0CY00233J
Xu L L, Wang F G, Chen M D, Nie D Y, Lian X B, Lu Z Y, Chen H X, Zhang K, Ge P X. CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity[J]. Int. J. Hydrogen Energy, 2017,42(23):15523-15539. doi: 10.1016/j.ijhydene.2017.05.027
Wen X Y, Xu L L, Chen M D, Shi Y Y, Lv C F, Cui Y, Wu X Y, Cheng G, Wu C E, Miao Z C, Wang F G, Hu X. Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies[J]. Appl. Catal. B-Environ., 2021,297120486. doi: 10.1016/j.apcatb.2021.120486
Aimdate K, Srifa A, Koo-Amornpattana W, Sakdaronnarong C, Klysubun W, Kiatphuengporn S, Assabumrungrat S, Wongsakulphasatch S, Kaveevivitchai W, Sudoh M, Watanabe R, Fukuhara C, Ratchahat S. Natural kaolin-based Ni catalysts for CO2 methanation: On the effect of Ce enhancement and microwave-assisted hydrothermal Synthesis[J]. ACS Omega, 2021,6(21):13779-13794. doi: 10.1021/acsomega.1c01231
Hu D C, Gao J J, Ping Y, Jia L H, Gunawan P, Zhong Z Y, Xu G W, Gu F N, Su F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Ind. Eng. Chem. Res., 2012,51(13):4875-4886. doi: 10.1021/ie300049f
Han X X, Yang J Z, Han B Y, Sun W, Zhao C F, Lu Y X, Li Z, Ren J. Density functional theory study of the mechanism of CO methanation on Ni4/t-ZrO2 catalysts: Roles of surface oxygen vacancies and hydroxyl groups[J]. Int. J. Hydrogen Energy, 2017,42(1):177-192. doi: 10.1016/j.ijhydene.2016.11.028
Zhao B R, Yao Y J, Shi H F, Yang F, Jia X Z, Liu P, Ma X X. Preparation of Ni/SiO2 catalyst via novel plasma-induced micro-combustion method[J]. Catal. Today, 2019,337:28-36. doi: 10.1016/j.cattod.2019.04.068
LI J L, FU N, LÜ G X. Photocatalytic methanation of CO2 over TiO2 nanoribbons[J]. Chinese J. Inorg. Chem., 2010,26(12):2175-2181.
Cui Y, Qiu J, Chen B, Xu L L, Chen M D, Wu C E, Cheng G, Yang B, Wang N, Hu X. CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification[J]. Fuel, 2022,324124679. doi: 10.1016/j.fuel.2022.124679
Zhang T F, Ai H M, Liu Q. La2O3-promoted Ni/Al2O3 catalyst for CO methanation: Enhanced catalytic activity and stability[J]. Energy Technol.-Ger., 2019,7(10)1900531. doi: 10.1002/ente.201900531
Mihet M, Dan M, Barbu-Tudoran L, Lazar M D. CO2 methanation using multimodal Ni/SiO2 catalysts: Effect of support modification by MgO, CeO2, and La2O3[J]. Catalysts, 2021,11(4)443. doi: 10.3390/catal11040443
Shi Z M, Wan C S, Huang M, Pan J H, Luo R Z, Li D L, Jiang L L. Characterization and catalytic behavior of hydrotalcite-derived Ni-Al catalysts for methane decomposition[J]. Int. J. Hydrogen Energy, 2020,45(35):17299-17310. doi: 10.1016/j.ijhydene.2020.04.141
Koo K Y, Roh H S, Seo Y T, Seo D J, Yoon W L, Park S B. A highly effective and stable nano-sized Ni/MgO-Al2O3 catalyst for gas to liquids (GTL) process[J]. Int. J. Hydrogen Energy, 2008,33(8):2036-2043. doi: 10.1016/j.ijhydene.2008.02.029
Jie L, Li C M, Wang F, He S, Chen H, Zhao Y F, Wei M, Evans D G, Duan X. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catal. Sci. Technol., 2013,3(10):2627-2633. doi: 10.1039/c3cy00355h
Chen A, Miyao T, Higashiyama K, Watanabe M. High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation[J]. Catal. Sci. Technol., 2014,4(8):2508-2511. doi: 10.1039/C4CY00461B
Michalska K, Kowalik P, Próchniak W, Borowiecki T. The effect of La2O3 on Ni/Al2O3 catalyst for methanation at very low COx/H2 ratio[J]. Catal. Lett., 2018,148(3):972-978. doi: 10.1007/s10562-018-2302-y
Le M C, Van K L, Nguyen T H T, Nguyen N H. The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO2 methanation of Ni/AC catalyst at low temperature[J]. J. Chem., 20174361056.
Garbarino G, Wang C, Cavattoni T, Finocchio E, Riani P, Flytzani-Stephanopoulos M, Busca G. A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation[J]. Appl. Catal. B-Environ., 2019,248:286-297. doi: 10.1016/j.apcatb.2018.12.063
Siakavelas G I, Charisiou N D, Alkhoori S A, Alkhoori A A, Sebastian V, Hinder S J, Baker M A, Yentekakis I V, Polychronopoulou K, Goula M A. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction[J]. Appl. Catal. B-Environ., 2021,282119562. doi: 10.1016/j.apcatb.2020.119562
Gholami S, Alavi S M, Rezaei M. Preparation of highly active and stable nanostructured Ni-Cr2O3 catalysts for hydrogen purification via CO2 methanation reaction[J]. J. Energy Inst., 2021,95:132-142. doi: 10.1016/j.joei.2021.01.009
Ilsemann J, Sonström A, Gesing T, Anwander R, Bäumer M. Highly active Sm2O3-Ni xerogel catalysts for CO2 methanation[J]. ChemCatChem, 2019,11(6):1732-1741. doi: 10.1002/cctc.201802049
Gödde J, Merko M, Xia W, Muhler M. Nickel nanoparticles supported on nitrogen-doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst[J]. J. Energy Chem., 2021,54:323-331. doi: 10.1016/j.jechem.2020.06.007
Wei L, Haije W, Kumar N, Peltonen J, Peurla M, Grenman H, de Jong W. Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation[J]. Catal. Today, 2021,362:35-46. doi: 10.1016/j.cattod.2020.05.025
Ye R P, Liao L, Reina T R, Liu J, Chevella D, Jin Y G, Fan M H, Liu J. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation[J]. Fuel, 2021,285119151. doi: 10.1016/j.fuel.2020.119151
Sani L A, Wang C, Zhang M, Bai H, An P, Han Z, Shi L, Wang K, Bai D, Xu G W, Su F B, Zhang Z G. Methanation of CO2 over Yb-promoted Ni/Al2O3 catalysts prepared by solution combustion[J]. Energy Fuels, 2022,36(10):5360-5374. doi: 10.1021/acs.energyfuels.2c00180
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044