Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation
- Corresponding author: Qin SHI, jackshiqin@outlook.com Honghui PAN, honghui_pan@gxmzu.edu.cn
Citation:
Zizheng LU, Wanyi SU, Qin SHI, Honghui PAN, Chuanqi ZHAO, Chengfeng HUANG, Jinguo PENG. Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(3): 591-600.
doi:
10.11862/CJIC.20230225
TIAN Y J, WU Y S, HUANG T Y, CHEN S Q, ZHANG J G, PANG Y. Occurrence of PPCPs in surface water and sediment in China and influencing factors of interactive migration[J]. Journal of Environmental Engineering Technology, 2023,13(2):585-596.
Yi K X, Wang D B, Yang Q, Li X M, Chen H B, Sun J, An H X, Wang L Q, Deng Y C, Liu J, Zeng G M. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Sci. Total Environ., 2017,605:368-375.
Orimolade B O, Koiki B A, Peleyeju G M, Arotiba O A. Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants[J]. Electrochim. Acta, 2019,307:285-292. doi: 10.1016/j.electacta.2019.03.217
Deegan A M, Shaik B, Nolan K, Urell K, Oelgemoeller M, Tobin J, Morrissey A. Treatment options for wastewater effluents from pharmaceutical companies[J]. Int. J. Environ. Sci. Technol., 2011,8(3):649-666. doi: 10.1007/BF03326250
Tan M, Fu Y J, Zhang K J, Liu Y Q, Zhang C, Hao D, Wang Q, Du H. Visible-light-responsive BiVO4/NH2-MIL-125(Ti) Z-scheme heterojunctions with enhanced photoelectrocatalytic degradation of phenol[J]. J. Alloy. Compd., 2023,936168345. doi: 10.1016/j.jallcom.2022.168345
Smilyk V O, Fomanyuk S S, Kolbasov G Y, Rusetskyi I A, Vorobets V S. Electrodeposition, optical and photoelectrochemical properties of BiVO4 and BiVO4/WO3 films[J]. Res. Chem. Intermed., 2019,45(8):4149-4161. doi: 10.1007/s11164-019-03897-y
Yang N C, Chen R T, Ni C W, Li D F, Sun Q, Liu L F, Qi Y, Jin S Y, Wang X L, Fan F T, Li C, Zhang F X. Tip-induced directional charge separation on one-dimensional BiVO4 nanocones for asymmetric light absorption[J]. J. Energy Chem., 2022,72(8):326-332.
Qin N B, Zhang S F, He J Y, Long F, Wang L L. In situ synthesis of BiVO4/BiOBr microsphere heterojunction with enhanced photocatalytic performance[J]. J. Alloy. Compd., 2022,927166661. doi: 10.1016/j.jallcom.2022.166661
Wang S C, Wang X, Liu B Y, Guo Z C, Ostrikov K, Wang L Z, Huang W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting[J]. Nanoscale, 2021,13(43):17989-18009. doi: 10.1039/D1NR05691C
Prasad U, Prakash J, Azeredo B, Kannan A. Stoichiometric and non-stoichiometric tungsten doping effect in bismuth vanadate based photoactive material for photoelectrochemical water splitting[J]. Electrochim. Acta, 2019,299:262-272. doi: 10.1016/j.electacta.2019.01.013
Zhao X, Hu J, Chen S, Chen Z. An investigation on the roles of W doping in BiVO4 photoanode for solar water splitting[J]. Phys. Chem. Chem. Phys., 2018,20(19):13637-13645. doi: 10.1039/C8CP01316K
Zhao L, Wei J D, Li Y T, Han C, Pan L, Liu Z F. Photoelectrochemical performance of W-doped BiVO4 photoanode[J]. J. Mater. Sci.: Mater. Electron., 2019,30(24):21425-21434. doi: 10.1007/s10854-019-02521-4
Shi Q, Murcia-Lopez S, Tang P Y, Flox C, Morante J R, Bian Z Y, Wang H, Andreu T. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process[J]. ACS Catal., 2018,8(4):3331-3342. doi: 10.1021/acscatal.7b04277
Pattengale B, Ludwig J, Huang J. Atomic insight into the W-doping effect on carrier dynamics and photoelectrochemical properties of BiVO4 photoanodes[J]. J. Phys. Chem. C, 2016,120(3):1421-1427. doi: 10.1021/acs.jpcc.5b11451
WAN L J, YANG M. Synthesis of BiVO4 photoanode with improved photoelectrochemical performance by W-doping and surface electrochemical pretreatment[J]. Journal of Sichuan University (Natural Science Edition), 2018,55(3):571-578.
WANG J H, WU L, LIU S P. First-principles study fou the effect of Yb doping concentration on the electronic structures and optical properties of ZnO[J]. Journal of Atomic and Molecular Physics, 2023,40(6):169-174.
Yang Y C, Zhao Y, Fan W Q, Shen H, Shi W D. A simple flame strategy for constructing W-doped BiVO4 photoanodes with enhanced photoelectrochemical water splitting[J]. Int. J. Energy Res., 2020,44(13):10821-10831. doi: 10.1002/er.5736
Chala S, Wetchakun K, Phanichphant S, Inceesungvorn B, Wetchakun N. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst[J]. J. Alloy. Compd., 2014,597:129-135. doi: 10.1016/j.jallcom.2014.01.130
Zhang J, Cui H, Wang B, Li C, Zhai J P, Li Q. Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: Synthesis, characterization and photocatalytic application[J]. Chem. Eng. J., 2013,223:737-746. doi: 10.1016/j.cej.2012.12.065
Song X Z, Shi Q, Wang H, Liu S L, Tai C, Bian Z Y. Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols[J]. Appl. Catal. B-Environ., 2017,203:442-451. doi: 10.1016/j.apcatb.2016.10.036
Zeng J, Zhong J B, Li J Z, Xiang Z, Liu X L, Chen J F. Improvement of photocatalytic activity under solar light of BiVO4 microcrystals synthesized by surfactant-assisted hydrothermal method[J]. Mater. Sci. Semicond. Process., 2014,27(1):41-46.
Zhao X, Hu J, Yao X, Chen S, Chen Z. Clarifying the roles of oxygen vacancy in W-doped BiVO4 for solar water splitting[J]. ACS Appl. Energy Mater., 2018,1(7):3410-3419. doi: 10.1021/acsaem.8b00559
Cho S K, Park H S, Lee H C, Nam K M, Bard A J. Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation[J]. J. Phys. Chem. C, 2013,117(44):23048-23056. doi: 10.1021/jp408619u
Ding K N, Chen B, Fang Z X, Zhang Y F, Chen Z F. Why the photocatalytic activity of Mo-doped BiVO4 is enhanced: A comprehensive density functional study[J]. Phys. Chem. Chem. Phys., 2014,16(26):13465-13476. doi: 10.1039/c4cp01350f
Fang M, Cai Q A, Qin Q, Hong W T, Liu W. Mo-doping induced crystal orientation reconstruction and oxygen vacancy on BiVO4 homojunction for enhanced solar-driven water splitting[J]. Chem. Eng. J., 2021,421127796. doi: 10.1016/j.cej.2020.127796
Massaro A, Pecoraro A, Hernández S, Talarico G, Muñoz-García A B, Pavone M. Oxygen evolution reaction at the Mo/W-doped bismuth vanadate surface: Assessing the dopant role by DFT calculations[J]. Mol. Catal., 2022,517112036. doi: 10.1016/j.mcat.2021.112036
Monllor-Satoca D, Bärtsch M, Fàbrega C, Genç A, Reinhard S, Andreu T, Arbiol J, Niederberger M, Morante J R. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes[J]. Energy Environ. Sci., 2015,8(11):3242-3254. doi: 10.1039/C5EE01679G
Trzesniewski B J, Digdaya I A, Nagaki T, Ravishankar S, Herraiz-Cardona I, Vermaas D A, Longo A, Gimenez S, Smith W A. Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes[J]. Energy Environ. Sci., 2017,10(6):1517-1529. doi: 10.1039/C6EE03677E
Gao Y, Hamann T W. Elucidation of CuWO4 surface states during photoelectrochemical water oxidation[J]. J. Phys. Chem. Lett., 2017,8(12):2700-2704. doi: 10.1021/acs.jpclett.7b00664
Hajibabaei H, Schon A R, Hamann T W. Interface control of photoelectrochemical water oxidatio performance with Ni1-xFexOy modified hematite photoanodes[J]. Chem. Mater., 2017,29(16):6674-6683. doi: 10.1021/acs.chemmater.7b01149
Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann T W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes[J]. Energy Environ. Sci., 2012,5(6):7626-7636. doi: 10.1039/c2ee21414h
Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. Water oxidation at hematite photoelectrodes: The role of surface states[J]. J. Am. Chem. Soc., 2012,134(9):4294-4302. doi: 10.1021/ja210755h
Thalluri S M, Rojas R M, Rivera O D, Hernández S, Russo N, Rodil S E. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response[J]. Phys. Chem. Chem. Phys., 2015,17(27):17821-17827. doi: 10.1039/C5CP01561H
Chang B Y. Conversion of a constant phase element to an equivalent capacitor[J]. J. Electrochem. Sci. Technol., 2020,11(3):318-321. doi: 10.33961/jecst.2020.00815
Talasila G, Sachdev S, Srivastva U, Saxena D, Ramakumar S S V. Modified synthesis of BiVO4 and effect of doping (Mo or W) on its photoelectrochemical performance for water splitting[J]. Energy Rep., 2020,6:1963-1972. doi: 10.1016/j.egyr.2020.07.024
Tang P Y, Xie H B, Ros C, Han L J, Biset-Peiró M, He Y, Kramer W, Rodríguez A P, Saucedo E, Galán-Mascarós J R, Andreu T, Morante J R, Arbiol J. Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering[J]. Energy Environ. Sci., 2017,10(10):2124-2136. doi: 10.1039/C7EE01475A
Yang Y, Zhao S H, Bi F K, Chen J F, Li Y T, Cui L F, Xu J C, Zhang X D. Oxygen-vacancy-induced O2 activation and electron-hole migration enhance photothermal catalytic toluene oxidation[J]. Cell Rep. Phys. Sci., 2022,3(8)101011. doi: 10.1016/j.xcrp.2022.101011
Shi L, Liu J D, Gao B, Sillanpää M. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane[J]. Sci. Total Environ., 2021,813:152397-152397.
Hu J, Zhao X, Chen W, Su H B, Chen Z. Theoretical insight into the mechanism of photoelectrochemical oxygen evolution reaction on BiVO4 anode with oxygen vacancy[J]. J. Phys. Chem. C, 2017,121(34):18702-18709. doi: 10.1021/acs.jpcc.7b05884
Park Y, McDonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chem. Soc. Rev., 2013,42(6):2321-2337. doi: 10.1039/C2CS35260E
Ye S S, Chen Y X, Yao X L, Zhang J D. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review[J]. Chemosphere, 2021,273128503. doi: 10.1016/j.chemosphere.2020.128503
Zhang L, Shi Q, Guo Y Y, Xu D D, Wang H, Wang L Y, Bian Z Y. Interface optimization by impedance spectroscopy and photoelectrocatalytic degradation of clofibric acid[J]. Electrochim. Acta, 2019,300:242-252. doi: 10.1016/j.electacta.2019.01.103
Guo H G, Gao N Y, Chu W H, Li L, Zhang Y J, Gu J S, Gu Y L. Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: Kinetics, parameters, and products[J]. Environ. Sci. Pollut. Res., 2013,20(5):3202-3213. doi: 10.1007/s11356-012-1229-x
Yahya M S, Oturan N, El Kacemi K, El Karbane M, Aravindakumar C T, Oturan M A. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: Kinetics and oxidation products[J]. Chemosphere, 2014,117:447-454. doi: 10.1016/j.chemosphere.2014.08.016
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.V=1.0 V, the electrolyte was sodium sulfate and CIP.
The scan rate was 0.1 V·s-1.