Research progress on design of high entropy oxides and their applications in lithium-ion batteries
- Corresponding author: Rui WANG, wangrui@cjlu.edu.cn Qiao-Ling KANG, kangqiaoling@cjlu.edu.cn Qing-Yi LU,
Citation:
Hao-Yu XU, Rui WANG, Qiao-Ling KANG, Dong-Yun LI, Yang XU, Hong-Liang GE, Qing-Yi LU. Research progress on design of high entropy oxides and their applications in lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(12): 2241-2255.
doi:
10.11862/CJIC.2023.206
Ping X Y, Meng B, Yu X H, Ma Z Y, Pan X Y, Lin W. Structural, mechanical and thermal properties of cubic bixbyite-structured high-entropy oxides[J]. Chem. Eng. J., 2023,464142649. doi: 10.1016/j.cej.2023.142649
Lai D W, Kang Q L, Gao F, Lu Q Y. High-entropy effect of a metal phosphide on enhanced overall water splitting performance[J]. J. Mater. Chem. A, 2021,9:17913-1792. doi: 10.1039/D1TA04755H
Tomboc G M, Zhang X D, Choi S, Kim D, Lee L Y S, Lee K. Stabilization, characterization, and electrochemical applications of high-entropy oxides: Critical assessment of crystal phase-properties relationship[J]. Adv. Funct. Mater., 2022,32(43)2205142. doi: 10.1002/adfm.202205142
Zeng Y, Ouyang B, Liu J, Byeon Y W, Cai Z J, Miara L J, Wang Y, Ceder G. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022,378(6626):1320-1324. doi: 10.1126/science.abq1346
Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P. Entropy-stabilized oxides[J]. Nat. Commun., 2015,68485. doi: 10.1038/ncomms9485
Su L, Ren J K, Lu T, Chen K X, Ouyangj W, Zhang Y, Zhu X Y, Wang L Y, Min H H, Luo W, Sun Z F, Zhang Q B, Wu Y, Sun L T, Mai L Q, Xu F. Deciphering structural origins of highly reversible lithium storage in high entropy oxides with in situ transmission electron microscopy[J]. Adv. Mater., 2023,35(19)e2205751. doi: 10.1002/adma.202205751
Zhang F N, Cheng F H, Cheng C F, Guo M, Liu Y F, Miao Y, Gao F, Wang X M. Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La)O high entropy fluorite oxides[J]. J. Mater. Sci. Technol., 2022,105:122-130. doi: 10.1016/j.jmst.2021.07.028
Gild J, Samiee M, Braun J L, Harrington T, Vega H, Hopkins P E, Vecchio K, Luo J. High-entropy fluorite oxides[J]. J. Eur. Ceram. Soc., 2018,38(10):3578-3584. doi: 10.1016/j.jeurceramsoc.2018.04.010
Xiao B, Wu G, Wang T D, Wei Z G, Sui Y W, Shen B L, Qi J Q, Wei F X, Zheng J C. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries[J]. Nano Energy, 2022,95106962. doi: 10.1016/j.nanoen.2022.106962
Sun Z, Zhao Y J, Sun C, Ni Q, Wang C Z, Jin H B. High entropy spinel-structure oxide for electrochemical application[J]. Chem. Eng. J., 2022,431133448. doi: 10.1016/j.cej.2021.133448
Nguyen T X, Patra J, Chang J K, Ting J M. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance[J]. J. Mater. Chem. A, 2020,8(36):18963-18973. doi: 10.1039/D0TA04844E
Wang Y L, Li H Y, Liu H J, Yang L X, Zeng C L. Preparation and formation mechanism of Cr-free spinel-structured high entropy oxide (MnFeCoNiCu)3O4[J]. Ceram. Int., 2023,49(2):1940-1946. doi: 10.1016/j.ceramint.2022.09.159
Zheng Y, Wu X, Lan X X, Hu R Z. A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries[J]. Processes, 2022,10(1)49.
Kong Y Z, Yang Z R. Synthesis, structure and electrochemical properties of Al doped high entropy perovskite LiX(LiLaCaSrBa)Ti1-XAlXO3[J]. Ceram. Int., 2022,48(4):5035-5039. doi: 10.1016/j.ceramint.2021.11.041
Yan J H, Wang D, Zhang X Y, Li J S, Du Q, Liu X Y, Zhang J R, Qi X W. A high-entropy perovskite titanate lithium-ion battery anode[J]. J. Mater. Sci., 2020,55(16):6942-6951. doi: 10.1007/s10853-020-04482-0
Brahlek M, Gazda M, Keppens V, Mazza A R, Mccormack S J, Mielewczyk-gryn A, Musico B, Page K, Rost C M, Sinnott S B, Toher C, Ward T Z, Yamamoto A. What is in a name: Defining "high entropy" oxides[J]. APL Mater., 2022,10(11)110902. doi: 10.1063/5.0122727
Fu F, Liu X, Fu X G, Chen H W, Huang L, Fan J J, Le J B, Wang Q X, Yang W H, Ren Y, Amine K, Sun S G, Xu G L. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nat. Commun., 2022,13(1)2826. doi: 10.1038/s41467-022-30113-0
Chen Y W, Fu H Y, Huang Y Y, Huang L Q, Zheng X Y, Dai Y M, Huang Y H, Luo W. Opportunities for high-entropy materials in rechargeable batteries[J]. ACS Mater. Lett., 2021,3(2):160-170. doi: 10.1021/acsmaterialslett.0c00484
George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nat. Rev. Mater., 2019,4(8):515-534. doi: 10.1038/s41578-019-0121-4
Patra J, Nguyen T X, Tsai C C, Clemens O, Li J, Pal P, Chan W K, Lee C H, Chen H Y T, Ting J M, Chang J K. Effects of elemental modulation on phase purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion batteries[J]. Adv. Funct. Mater., 2022,32(17)2110992. doi: 10.1002/adfm.202110992
Liu X F, Li X K, Li Y G, Zhang H J, Jia Q L, Zhang S W, Lei W. High-entropy oxide: a future anode contender for lithium-ion battery[J]. EcoMat., 2022,4e12261. doi: 10.1002/eom2.12261
Su J Y, Cao Z Z, Jiang Z P, Chen G H, Zhu Y X, Wang L Y, Li G R. High entropy oxide nanofiber by electrospun method and its application for lithium battery anode material[J]. Int. J. Appl. Ceram. Technol., 2022,19(4):2004-2015. doi: 10.1111/ijac.14021
Wang X Z, Dong Q, Qiao H Y, Huang Z N, Saray M T, Zhong G, Lin Z W, Cui M J, Brozena A, Hong M, Xia Q Q, Gao J L, Chen G, Shahbazinan Y R, Wang D W, Hu L B. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications[J]. Adv. Mater., 2020,32(46)2002853. doi: 10.1002/adma.202002853
Lokcu E, Toparli C, Anik M. Electrochemical performance of (MgCoNiZn)1-xLixO high-entropy oxides in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(21):23860-23866. doi: 10.1021/acsami.0c03562
Mozdzierz M, Dabrowa J, Stepien A, Zajusz M, Stygar M, Zajac W, Danielewski M, Swierczek K. Mixed ionic-electronic transport in the high-entropy (Co, Cu, Mg, Ni, Zn)1-XLiXO oxides[J]. Acta Mater., 2021,208116735. doi: 10.1016/j.actamat.2021.116735
Xiang H Z, Xie H X, Chen Y X, Zhang H, Mao A Q, Zheng C H. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries[J]. J. Mater. Sci., 2021,56(13):8127-8142. doi: 10.1007/s10853-021-05805-5
Guo M, Liu Y F, Zhang F N, Cheng F H, Cheng C F, Miao Y, Gao F, Yu J. Inactive Al3+-doped La(CoCrFeMnNiAlX)1/(5+X)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes[J]. J. Adv. Ceram., 2022,11(5):742-753. doi: 10.1007/s40145-022-0568-4
Zhang G M, Long Y, Chen J X, Yan Z Q, Lin H T, Zhang F L. Oxidation behavior of Y0.1-doped feconialcrb high-entropy alloy[J]. Corrosion Sci., 2022,209110804. doi: 10.1016/j.corsci.2022.110804
Eroglu O, Kizil H. The effect of the iron doping on anatase TiO2 anode for electrochemical performance of sodium-ion batteries[J]. Solid State Ion., 2023,393116168. doi: 10.1016/j.ssi.2023.116168
Duan C Q, Tian K H, Li X L, Wang D, Sun H Y, Zheng R G, Wang Z Y, Liu Y G. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X=Cu, Mg, Zn) as the anode material for lithium-ion batteries[J]. Ceram. Int., 2021,47(22):32025-32032. doi: 10.1016/j.ceramint.2021.08.091
Liu X F, Xing Y Y, Xu K, Zhang H J, Gong M X, Jia Q L, Zhang S W, Lei W. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies[J]. Small, 2022,18(18)2200524. doi: 10.1002/smll.202200524
WANG P P, JIA Y G, SHAO X, CHENG J, MAO A Q, TAN J, FANG D L. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials[J]. CIESC J., 2022,73(12):5625-5637.
Sun T T, Zhao X M, Li B, Shu H B, Luo L P, Xia W L, Chen M F, Zeng P, Yang X K, Gao P, Pei Y, Wang X Y. NiMoO4 Nanosheets anchored on N-S doped carbon clothes with hierarchical structure as a bidirectional catalyst toward accelerating polysulfides conversion for Li-S battery[J]. Adv. Funct. Mater., 2021,31(25)2101285. doi: 10.1002/adfm.202101285
Feng H, Han Y, Li H B, Tian Y Z, Zhu H C, Jiang Z H, He T, Zhou G. Enhancement in impact toughness of cocrfemnni high-entropy alloy via nitrogen addition[J]. J. Alloy. Compd., 2023,932167615. doi: 10.1016/j.jallcom.2022.167615
Wang Q S, Sarkar A, Wang D, Velasco L, Azmi R, Bhattacharya S S, Bergfeldt T, Duvel A, Heitjans P, Brezesinski T, Hahn H, Breitung B. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries[J]. Energy Environ. Sci., 2019,12(8):2433-2442. doi: 10.1039/C9EE00368A
Jing L, Li W L, Gao C, Li M L, Fei W D. Enhanced energy storage performance achieved in multilayered pvdf-pmma nanocomposites incorporated with high-entropy oxide nanofibers[J]. ACS Appl. Energ. Mater., 2023,6(5):3093-3101. doi: 10.1021/acsaem.3c00054
Zou X K, Zhagn Y R, Huang Z P, Yue K, Guo Z H. High-entropy oxides: An emerging anode material for lithium-ion batteries[J]. Chem. Commun., 2023. doi: 10.1039/d3cc04225a
Wang H B, Zheng Y J, Peng Z L, Liu X L, Qu C, Huang Z Y, Cai Z L, Fan H S, Zhang Y F. Nanocavity-enriched Co3O4@ZnCo2O4@NC porous nanowires derived from 1d metal coordination polymers for fast Li+ diffusion kinetics and super Li+ storage[J]. Dalton Trans., 2021,50(21):7277-7283. doi: 10.1039/D1DT00475A
Liu J L, Li Y Q, Chen Z, Liu N, Zheng L, Shi W X, Wang X. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires[J]. J. Am. Chem. Soc., 2022,144(50):23191-23197. doi: 10.1021/jacs.2c10602
Tian L Y, Zhang Z, Liu S, Li G R, Gao X P. High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium-sulfur batteries[J]. Nano Energy, 2023,106108037. doi: 10.1016/j.nanoen.2022.108037
Triolo C, Xu W L, Petrovicova B, Pinna N, Santangelo S. Evaluation of entropy-stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium-ion batteries[J]. Adv. Funct. Mater., 2022,32(32)2202892. doi: 10.1002/adfm.202202892
Khossossi N, Singh D, Ainane A, Ahuja R. Recent progress of defect chemistry on 2D materials for advanced battery anodes[J]. Chem. Asian J., 2020,15(21):3390-3404. doi: 10.1002/asia.202000908
Yang Y X, Dong R G, Cheng H, Wang L L, Tu J B, Zhang S C, Zhao S H, Zhang B, Pan H G, Lu Y Y. 2D layered materials for fast-charging lithium-ion battery anodes[J]. Small, 2023,19(34)2301574. doi: 10.1002/smll.202301574
Wang Y R, Zhuang Q F, Li Y, Hu Y L, Liu Y Y, Zhang Q B, Shi L, He C X, Zheng X, Yu S H. Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries[J]. Nano Res., 2022,15(6):5064-5071. doi: 10.1007/s12274-021-4030-7
Sun X, Tan K, Liu Y, Zhang J Y, Denis D K, Zaman F U, Hou L R, Yuan C Z. A two-dimensional assembly of ultrafine cobalt oxide nanocrystallites anchored on single-layer Ti3C2 nanosheets with enhanced lithium storage for Li-ion batteries[J]. Nanoscale, 2019,11(36):16755-16766. doi: 10.1039/C9NR04377B
Duan H H, Du L, Zhang S K, Chen Z W, Wu S P. Superior lithium-storage properties derived from a high pseudocapacitance behavior for a peony-like holey Co3O4 anode[J]. J. Mater. Chem. A, 2019,7(14):8327-8334. doi: 10.1039/C9TA00294D
Wei J L, Rong K, Li X L, Wang Y C, Qiao Z A, Fang Y X, Dong S J. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides[J]. Nano Res., 2022,15(3):2756-2763. doi: 10.1007/s12274-021-3860-7
Chen Y T, Lee J T, Liang T Y, Song Y H, Wu J M. Solid composite electrolyte based on oxygen vacancy effect of Lix(CoCrFeMnNi)O4-y high entropy oxides[J]. Electrochim. Acta, 2023,456142459. doi: 10.1016/j.electacta.2023.142459
Guo H L, Zhou J, Li Q Q, Li Y M, Zong W, Zhu J X, Xu J S, Zhang C, Liu T X. Emerging dual-channel transition-metal-oxide quasiaerogels by self-embedded templating[J]. Adv. Funct. Mater., 2020,30(15)2000024. doi: 10.1002/adfm.202000024
Xiao H, Li S P, Zhou J Y, Zhao C Y, Yuan Y, Xia X H, Bao Y W, Lourenco M, Homewood K, Gao Y. Synergetic contributions from the components of flexible 3D structured C/Ag/ZnO/CC anode materials for lithium-ion batteries[J]. Energy Environ. Mater., 2022. doi: 10.1002/eem2.12537
Guo M, Zhong S L, Xu T, Huang Y Q, Xia G L, Zhang T F, Yu X B. 3D hollow mxene (Ti3C2)/reduced graphene oxide hybrid nanospheres for high-performance Li-ion storage[J]. J. Mater. Chem. A, 2021,9(42):23841-23849. doi: 10.1039/D1TA07250A
Yang X B, Wang H Q, Song Y Y, Liu K T, Huang T T, Wang X Y, Zhang C F, Li J. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022,14(23):26873-26881. doi: 10.1021/acsami.2c07576
Du M, Geng P B, Pei C X, Jiang X Y, Shan Y Y, Hu W H, Ni L B, Pang H. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2022,61(41)202209350. doi: 10.1002/anie.202209350
Meng Z S, Gong X L, Xu J, Sun X C, Zeng F D, Du Z Y, Hao Z Y, Shi W, Yu S S, Hu X Y, Tian H W. A general strategy for preparing hollow spherical multilayer structures of oxygen-rich vacancy transition metal oxides, especially high entropy perovskite oxides[J]. Chem. Eng. J., 2023,457141242. doi: 10.1016/j.cej.2022.141242
Chen Y X, Shi X D, Lu B G, Zhou J. Concave engineering of hollow carbon spheres toward advanced anode material for sodium/potassium-ion batteries[J]. Adv. Energy Mater., 2022,12(46)2202851. doi: 10.1002/aenm.202202851
Wei Q Y, Zhu H, Yu S J, Xu G Q, Yin J H, Tong J H, Chen T R, He X N, Guo P C, Jiang H D, Li J K, Wang Y X. High-performance lithium-ion batteries with different hollow-degree Fe3O4@C hollow nanostructures[J]. Appl. Surf. Sci., 2023,608155093. doi: 10.1016/j.apsusc.2022.155093
Ma Z P, Song A L, Liu Z, Guo Y Q, Yang X, Li Q, Fan Y Q, Dai L, Tian H, Qin X J, Liu H, Shao G J, Wang G X. Nanoconfined expansion behavior of hollow MnS@Carbon anode with extended lithiation cyclic stability[J]. Adv. Funct. Mater., 2023,332301112. doi: 10.1002/adfm.202301112
Zhu Y Q, Yang X, Xu L K, Jia G W, Du J. Hollow microscale and nanoscale structures as anode materials for lithium-ion batteries[J]. Chem. Mater., 2022,34(22):9803-9822. doi: 10.1021/acs.chemmater.2c02870
Lai D W, Ling L, Su M F, Kang Q L, Gao F, Lu Q Y. From amorphous to crystalline: A universal strategy for structure regulation of high-entropy transition metal oxides[J]. Chem. Sci., 2023,14(7):1787-1796. doi: 10.1039/D2SC04900G
Wei Y Q, Liu X H, Yao R Z, Qian J Y, Yin Y Y, Li D, Chen Y. Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries[J]. J. Alloy. Compd., 2023,938168610. doi: 10.1016/j.jallcom.2022.168610
Zhang Y, Zhang Y R, Ma L Q, Yang M, Zhao X Y. NiCr-Cl LDH/rGO composite as anode material for sodium-ion batteries[J]. J. Electron. Mater., 2022,51(11):6067-6075. doi: 10.1007/s11664-022-09911-1
Pan J H, Sun C X, Liu J J, Zhao X S, Jiao C X, Wang C K, Wang Q. One-step synthesis method of flower-like Si@NiO/RGO composites as high-performance anode for lithium-ion batteries[J]. J. Alloy. Compd., 2023,947169506. doi: 10.1016/j.jallcom.2023.169506
Zhu J K, Tu W M, Pan H F, Zhang H, Liu B, Cheng Y P, Deng Z, Zhang H N. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries[J]. ACS Nano, 2020,14(5):5780-5787. doi: 10.1021/acsnano.0c00712
Yao W, Zhang F, Qiu W J, Xu Z X, Xu J G, Wen Y C. General synthesis of uniform three-dimensional metal oxides/reduced graphene oxide aerogels by a nucleation-inducing growth strategy for high-performance lithium storage[J]. ACS Sustain. Chem. Eng., 2019,7(1):847-857. doi: 10.1021/acssuschemeng.8b04467
Liu Z Y, Liu Y, Xu Y J, Zhagn H L, Shao Z P, Wang Z B, Chen H S. Novel high-entropy oxides for energy storage and conversion: From fundamentals to practical applications[J]. Green Energy Environ., 2023,8(5):13410-1357.
Chen P, Yang C, Gao P, Chen X L, Cheng Y J, Liu J L, Guo K K. Distinctive formation of bifunctional ZnCoS-rGO 3D hollow microsphere flowers with excellent energy storage performances[J]. Chem. Mater., 2022,34(13):5896-5911. doi: 10.1021/acs.chemmater.2c00794
Zhang W Y, Su Z, Yi S, Chen H L, Wang M H, Niu B, Zhang Y Y, Long D H. Sandwich structured metal oxide/reduced graphene oxide/metal oxide-based polymer electrolyte enables continuous inorganic-organic interphase for fast lithium-ion transportation[J]. Small, 2023,102207536.
Zheng C, Xu X C, Lin Q W, Chen Y W, Guo Z, Jian B Q, Li N, Zhang H Y, Lv W. Confined growth of Fe2O3 nanoparticles by holey graphene for enhanced sodium-ion storage[J]. Carbon, 2021,176:31-38. doi: 10.1016/j.carbon.2021.01.122
Wang X, Wang R, Kang Q L, Yan L J, Ma T L, Li D Y, Xu Y, Ge H L. Construction of Cu-doped Co3O4/rGO composites with a typical buffer structure for high-performance lithium storage[J]. Colloids Surf. A, 2023,656130325. doi: 10.1016/j.colsurfa.2022.130325
Guo H C, Shen J X, Wang T L, Cheng C B, Yao H Y, Han X J, Zheng Q J. Design and fabrication of high-entropy oxide anchored on graphene for boosting kinetic performance and energy storage[J]. Ceram. Int., 2022,48(3):3344-3350. doi: 10.1016/j.ceramint.2021.10.109
Wang Q S, Velasco L, Breitung B, Presser V. High-entropy energy materials in the age of big data: A critical guide to next-generation synthesis and applications[J]. Adv. Energy Mater., 2021,11(47)2102355. doi: 10.1002/aenm.202102355
Yao Y G, Dong Q, Brozena A, Luo J, Miao J W, Chi M F, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang G F, Anapolsky A, Hu L B. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022,376151.
WANG X, WANG R, KANG Q L, LI D Y, XU Y, GE H L, GAO F, LU Q Y. Research progress on structural design and intrinsic activity modulation of co-based oxides for lithium-ion batteries[J]. Chinese J. Inorg. Chem., 2022,38(9):1673-1689.
ZHANG Q T, XU Z Q, SHU Q Q, LIAN F. Preparation and lithium storage properties of nitrogen, sulfur heteroatom hard carbon by pyrolysis of conjugated microporous polymers[J]. Chinese J. Inorg. Chem., 2023,39(1):45-54. doi: 10.11862/CJIC.2022.263
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393