Citation: Zhen LI, An-Chen WANG, Hui-Ming YIN, Da-Peng CAO, Bao-Xiu MI. Two-step electrophoretic deposition of TiO2 photoanode for highly effective dye-sensitized solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2349-2357. doi: 10.11862/CJIC.2023.202 shu

Two-step electrophoretic deposition of TiO2 photoanode for highly effective dye-sensitized solar cells

  • Corresponding author: Da-Peng CAO, iamdpcao@njupt.edu.cn
  • Received Date: 12 May 2023
    Revised Date: 25 October 2023

Figures(10)

  • In this work, the influences of electrophoretic voltage on film deposition rate, thickness and morphology were investigated. Photoanodes and dye-sensitized solar cells (DSSC) were characterized by step profiler, optical photograph, scanning electron microscope, electrochemical impedance spectroscopy (EIS) and open-circuit voltage decay (OCVD). Increasing electrophoretic voltage can accelerate deposition rate and increase the final film thickness. However, employing excessively high voltage leads to crack formation and incomplete coverage on FTO, thereby exerting an adverse impact on the efficiency of DSSC devices. By employing a "30 V followed by 60 V" deposition method, which combines the advantages of low and high voltages, photoanodes exhibiting a synergistic effect were successfully fabricated. This approach not only reduces electrophoretic time but also yields films of superior quality, resulting in an impressive device efficiency of 7.29% without any additional modifications.
  • 加载中
    1. [1]

      ZHU L, LI P, ZHAO B. An investigation of the effect of high-pressure on charge transfer in dye-sensitized solar cells based on surface‑ enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023,43(Sup1):151-152.  

    2. [2]

      Ren Y M, Zhang D, Suo J J, Cao Y M, Eickemeyer F T, Vlachopoulos N, Zakeeruddin S M, Hagfeldt A, Gratzel M. Hydroxamic acid pre- adsorption raises the efficiency of cosensitized solar cells[J]. Nature, 2023,613:6-65.

    3. [3]

      XU D, SHEN H J, XIE J J, WANG W, YUAN H H, LI Y Y, ZHANG T, CHEN X Y, HE Y L, ZHANG Y M. Screen printing, post-processing modification and application of PEDOT: PSS thin films in dye-sensitized solar cells[J]. Acta Polymerica Sinica, 2019,50(1):36-43.  

    4. [4]

      JIANG Q S, CHEN R T, LI W B, CHENG W J, HUANG Y X, HU G. Application of transparent cobalt sulfide electrode in dye-sensitized solar cells[J]. J. Inorg. Mater., 2018,33(8):832-838.  

    5. [5]

      LI Y, ZHUANG Q C, WANG H T, WU W W, ZHAO Y L, QIANG Y H. Study on interface characteristics of surface-modified TiO2 solar cells[J]. Chinese J. Inorg. Chem., 2014,30(4):763-769. doi: 10.11862/CJIC.2014.052

    6. [6]

      RAN H L, HUANG H, MA M J, ZHAI J S, FAN J J. Performance enhancement of double-layer TiO2 composite film dye-sensitized solar cells[J]. J. Inorg. Mater., 2017,32(10):1049-1054.  

    7. [7]

      Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998,395:583-585.

    8. [8]

      XI X W, HU L H, FANG X Q, DAI S Y. Effect of TiO2 film optimization on performance of dye-sensitized solar cells[J]. Chinese J. Inorg. Chem., 2011,27(7):1353-1357.  

    9. [9]

      ZHANG A, ZHANG C M, WU W X, WANG D Y, YAO S Y, MENG T. Preparation of dye-sensitized solar cells by screen printing[J]. Spectroscopy and Spectral Analysis, 2021,41(7):2321-2324.  

    10. [10]

      Kim G S, Seo H K, Godble V P, Kim Y S, Yang O B, Shi H S. Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: Application to dye-sensitized solar cells[J]. Electrochem. Commun., 2006,8:961-966.

    11. [11]

      Ahmad M S, Pandey A K, Rahim N A. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review[J]. Renew. Sust. Energ. Rev., 2017,77:89-108.

    12. [12]

      Hamadanian M, Gravand A, Jabbari V. High performance dye-sensitized solar cells (DSSCs) achieved via electrophoretic technique by optimizing of photoelectrode properties[J]. Mater. Sci. Semicond. Process., 2013,16:1352-1359.

    13. [13]

      Kawakita M, Uchikoshi T, Besra L, Suzuki T S, Kawakita J, Sakka Y. Formation of crystalline-oriented titania thin films on ITO glass electrodes by EPD in a strong magnetic field[J]. Key Eng. Mater., 2009,412:143-148.

    14. [14]

      Chen H W, Liang C P, Huang H S, Chen J G, Vittal R, Lin C Y, Wu K W, Ho K C. Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells[J]. Chem. Commun., 2011,47:8346-8348.

    15. [15]

      Shikoh A S, Ahmad Z, Touati F, Shakoor R A, Al-Muhtaseb S A. Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques[J]. Ceram. Int., 2017,43:10540-10545.

    16. [16]

      Yum J H, Kim S S, Kim D Y, Sung Y E. Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells[J]. J. Photochem., 2005,173:1-6.

    17. [17]

      Chiu W H, Lee K M, Hsieh W F. High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions[J]. J. Power Sources, 2011,196:3683-3687.

    18. [18]

      Shakir S, Abd-ur-Rehman H M, Zahid R, Lwamoto M, Periasamy V. Multistep electrophoretic deposition of TiO2 film and its surface modification for dye sensitized solar cells[J]. J. Alloy. Compd., 2020,837155579.

    19. [19]

      Lindstrom H, Magnusson E, Holmberg A, Södergren S, Lindquist S E, Hagfeldt A. A new method for manufacturing nanostructured electrodes on glass substrates[J]. Sol. Energy Mater Sol. Cells, 2002,73:91-101.

    20. [20]

      Jarernboon W, Pimanpang S, Maensiri S, Swatsitang E, Amornkitbamrung V. Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application[J]. Thin Solid Films, 2009,517:4663-4667.

    21. [21]

      Grinis L, Dor S, Ofir A, Zaban A. Electrophoretic deposition and compression of titania nanoparticle films for dye‑sensitized solar cells[J]. J. Photochem. Photobiol. A, 2008,198:52-59.

    22. [22]

      Kao M C, Chen H Z, Young S L, Kung C Y, Lin C C. The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells[J]. Thin Solid Films, 2009,517:5096-5099.

    23. [23]

      Cao D P, Yin H M, Yu X H, Zhang J B, Jiao Y F, Zheng W, Mi B X, Gao Z Q. Role of modifying photoanodes by organic titanium on charge collection efficiency enhancement in dye-sensitized solar cells[J]. Adv. Eng. Mater., 2020,221901071.

    24. [24]

      Joshy D, Narendranath S B, Ismail Y A, Periyat P. Recent progress in one dimensional TiO2 nanomaterials as photoanode in dye-sensitized solar cells[J]. Nanoscale Adv., 2022,39:112-190.

    25. [25]

      XIAO Y M, WU J H, YUE G T, LIN J M, HUANG M L, FAN L Q, LAN Z. Preparation of single crystal titanium dioxide nanowire and its application in flexible dye-sensitized solar cells[J]. Acta Phys.-Chim. Sin., 2012,28(3):578-584.  

    26. [26]

      Khir H, Pandey A K, Saidur R, Shakeel A M, Abd R N, Dewika M, Samykano M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells[J]. Sustain. Energy Technol., 2022,53102745.

    27. [27]

      GUO Z K, WANG S S, ZHANG X H, GUAN Z S, HE T. Application of TiO2 nanotube arrays with different structures and morphologies in dye-sensitized solar cells[J]. Chin. Sci. Bull., 2013,58(24):2479-2486.  

    28. [28]

      HUANG X W, DENG J Y, XU L, SHEN P, ZHAO B, TAN S T. Preparation of polymer/TiO2 hybrid nanofibers microporous membranes and its application in dye-sensitized solar cells[J]. Acta Chim. Sinica, 2012,70(15):1604-1610.  

    29. [29]

      YANG Y H, LÜ Y X, LI H, ZHAN F Q. Design of photoanode with TiO2-spiked sphere scattering center and its application in dye-sensitized solar cells[J]. Chinese J. Inorg. Chem., 2016,32(10):1802-1808. doi: 10.11862/CJIC.2016.235

    30. [30]

      ZHANG H, LI J P, CHEN W L, WANG E B. Application of sandwich type polyacid modified TiO2 in dye-sensitized solar cells[J]. Chin. Sci. Bull., 2018,63(32):3333-3341.

    31. [31]

      YANG J L. Interfacial charge transfer mechanism of dye-sensitized solar cells[J]. Acta Phys. -Chim. Sin., 2016,32(7):1554-1555.  

    32. [32]

      Beedri N I, Baviskar P K, Supekar A T, Inamuddin , Jadkar S R, Pathan H M. Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell[J]. Int. J. Mod. Phys. B, 2018,321840046.

    33. [33]

      Naik P, Su R, Elmorsy M R, El-Shafei A M, Adhikari A V. New di-anchoring A-π-D-π-A configured organic chromophores for DSSC application: Sensitization and co-sensitization studies[J]. Photochem. Photobiol. Sci., 2018,17:302-314.

    34. [34]

      Alizadeh A, Roudgar-Amoli M, Bonyad-Shekalgourabi S M, Shariatinia Z, Mahmoudi M, Saadat F. Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review[J]. Renew. Sustain. Energ. Rev., 2022,157112047.

    35. [35]

      Parikh N, Narayanan S, Kumari H, Prochowicz D, Kalam A, Satapathi S, Akin S, Tavakoli M M. Recent progress of light intensity-modulated small perturbation techniques in perovskite solar cells[J]. Phys. Status Solidi RRL, 2022,162100510.

    36. [36]

      Xu F, Sun L T. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells[J]. Energy Environ. Sci., 2011,4:818-841.

    37. [37]

      Roose B, Pathak S, Steiner U. Doping of TiO2 for sensitized solar cells[J]. Chem. Soc. Rev., 2015,44:8326-8349.

    38. [38]

      Cao D P, Wang A C, Yu X H, Yin H M, Zhang J B, Mi B X, Gao Z Q. Room-temperature preparation of TiO2/graphene composite photoanodes for efficient dye-sensitized solar cells[J]. J. Colloid Interface Sci., 2021,586:326-334.

    39. [39]

      Vesce L, Riccitelli R, Soscia G, Brown T M, Carlo A D, Reale A. Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment[J]. J. Non-Cryst. Solids, 2010,356:1958-1961.

    40. [40]

      Ito S, Liska P, Comte P, Charvet R L, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin S M, Kay A, Nazeeruddin M K, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells[J]. Chem. Commun., 2005,34:4351-4353.

    41. [41]

      Ghannadi S, Abdizadeh H, Rakhsha A, Golobostanfard M R. Sol-electrophoretic deposition of TiO2 nanoparticle/nanorod array for photoanode of dye-sensitized solar cell[J]. Mater. Chem. Phys., 2021,258123893.

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(6)
  • Abstract views(738)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return