Citation: Hao-Qiang HOU, Li-Fei XU, Zhou XU, Zheng YANG, Wei LI, Chun-Hui MA, Sha LUO, Shou-Xin LIU. Preparation and photocatalytic properties of Cu, N co-doped TiO2 nanotubes for glycerol reforming to syngas[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2103-2112. doi: 10.11862/CJIC.2023.172 shu

Preparation and photocatalytic properties of Cu, N co-doped TiO2 nanotubes for glycerol reforming to syngas

Figures(8)

  • Cu, N co-doped TiO2 nanotubes (Cu/N-TNT) were prepared by alkaline hydrothermal-ion exchange method, and the photocatalytic properties for glycerol reforming to syngas (H2 and CO) were studied. The results show that Cu/N-TNT catalyst has tubular structures with abundant oxygen vacancies (OV). N forms the impurity energy level by substituting the partial O in the form of Ti-N. Cu is doped into the crystal lattice gap and surface of the catalyst in the form of Cu2+. Cu, N co-doping promotes the effective surface charge separation on the TiO2, and improves the photocatalytic activity and selectivity for glycerol reforming to syngas. CO and H2 yields were 7.3 and 8.5 mmol· g-1 on Cu/N-TNT catalyst doped with 0.15% Cu, which were 9.1 and 70.8 times those on the original TiO2. The molar ratio of H2/CO was increased from 0.52 to 1.18, and the molar ratio of CO/CO2 was raised from 0.21 to 0.42 after 8 h of UV irradiation. N and OV on Cu/N-TNT surface provide the active sites for the decarbonylation of aldehydes and dehydration of formic acid to produce CO. Cu acts as the shallow potential traps to inhibit the electron-hole recombination. Photogenerated holes (h+) play vital roles on the syngas generation during the photocatalytic reforming of glycerol, and excessive hydroxyl radical (·OH) and superoxide radical (·O2-) favor the deep oxidation of glycerol and decrease the selectivity of CO.
  • 加载中
    1. [1]

      Chai Z G, Zeng T T, Li Q, Lu L Q, Xiao W J, Xu D S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst[J]. J. Am. Chem. Soc., 2016,138(32):10128-10131. doi: 10.1021/jacs.6b06860

    2. [2]

      Gombac V, Sordelli L, Montini T, Delgado J J, Adamski A, Adami G, Cargnello M, Bernal S, Fornasiero P. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions[J]. J. Phys. Chem. A, 2010,114(11):3916-3925. doi: 10.1021/jp907242q

    3. [3]

      Estahbanati M R K, Babin A, Feilizadeh M, Nayernia Z, Mahinpey N, Iliuta M C. Photocatalytic conversion of alcohols to hydrogen and carbon-containing products: A cleaner alcohol valorization approach[J]. J. Clean. Prod., 2021,318128546. doi: 10.1016/j.jclepro.2021.128546

    4. [4]

      Wu G P, Chen T, Zhou G H, Zong X, Li C. H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts[J]. Sci. China Ser. B Chem., 2008,51(2):97-100. doi: 10.1007/s11426-007-0132-7

    5. [5]

      Wu G P, Chen T, Su W G, Zhou G H, Zong X, Lei Z B, Li C. H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst[J]. Int. J. Hydro. Energy, 2008,33(4):1243-1251. doi: 10.1016/j.ijhydene.2007.12.020

    6. [6]

      Mohamed R M, Aazam E S. H2 production with low CO selectivity from photocatalytic reforming of glucose on Ni/TiO2-SiO2[J]. Chin J. Catal., 2012,33(2/3):247-253.

    7. [7]

      dos Santos R G, Alencar A C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review[J]. Int. J. Hydrog. Energy, 2020,45(36):18114-18132. doi: 10.1016/j.ijhydene.2019.07.133

    8. [8]

      Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X H. Selective conversion of syngas to light olefins[J]. Science, 2016,351(6277):1065-1068. doi: 10.1126/science.aaf1835

    9. [9]

      Wang M, Liu M J, Lu J M, Wang F. Photo splitting of bio-polyols and sugars to methanol and syngas[J]. Nat. Commun., 2020,111083. doi: 10.1038/s41467-020-14915-8

    10. [10]

      Zhang Z, Wang M, Zhou H R, Wang F. Surface sulfate ion on CdS catalyst enhances syngas generation from biopolyols[J]. J. Am. Chem. Soc., 2021,143(17):6533-6541. doi: 10.1021/jacs.1c00830

    11. [11]

      Zhou H R, Wang M, Wang F. Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4[J]. Chem, 2022,8(2):465-479. doi: 10.1016/j.chempr.2021.10.021

    12. [12]

      Zhang Z, Wang M, Wang F. Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution[J]. Chem. Catalysis., 2022,2(6):1394-1406. doi: 10.1016/j.checat.2022.04.001

    13. [13]

      Kong F H, Zhou H R, Chen Z W, Dou Z L, Wang M. Photoelectrocatalytic reforming of polyol-based biomass into CO and H2 over nitrogen-doped WO3 with built-in electric fields[J]. Angew. Chem. Int. Ed., 2022,61(42)e202210745. doi: 10.1002/anie.202210745

    14. [14]

      Zhao H, Liu P, Wu X X, Wang A G, Zheng D W, Wang S Y, Chen Z X, Larter S, Li Y, Su B L, Kibria M G, Hu J G. Plasmon enhanced glucose photoreforming for arabinose and gas fuel co-production over 3DOM TiO2-Au[J]. Appl. Catal. B-Environ., 2021,291120055. doi: 10.1016/j.apcatb.2021.120055

    15. [15]

      Erjavec B, Tišler T, Tchernychova E, Plahuta M, Pintar A. Self-doped Cu-deposited titania nanotubes as efficient visible light photocatalyst[J]. Catal. Lett., 2017,147:1686-1695. doi: 10.1007/s10562-017-2073-x

    16. [16]

      Jiang Z, Yang F, Luo N J, Chu B T T, Sun D Y, Shi H H, Xiao T C, Edwards P P. Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis[J]. Chem. Commun., 2008,47:6372-6374.

    17. [17]

      Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments[J]. Chem. Mat., 2006,18(2):367-373. doi: 10.1021/cm0518527

    18. [18]

      Yang P F, Pan J H, Liu Y N, Zhang X Y, Feng J T, Hong S, Li D Q. Insight into the role of unsaturated coordination O2c-Ti5c-O2c sites on selective glycerol oxidation over AuPt/TiO2 catalysts[J]. ACS Catal., 2019,9(1):188-199. doi: 10.1021/acscatal.8b03438

    19. [19]

      ZHANG X Y, CUI X L. Preparation and photocatalytic hydrogen evolution performance of C-N co-doped nano TiO2 photocatalysts[J]. Acta Phys.-Chim. Sin., 2009,25(9):1829-1834.  

    20. [20]

      AN L, WU H, HAN X, LI Y G, WANG H Z, ZHANG Q H. Non- precious metals Co5.47N/nitrogen-doped rGO co-catalyst enhanced photocatalytic hydrogen evolution performance of TiO2[J]. J. Inorg. Mater., 2022,37(5):534-542.  

    21. [21]

      Lalitha K, Sadanandam G, Kumari V D, Subrahmanyam M, Sreedhar B, Hebalkar N Y. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: Water mixtures[J]. J. Phys. Chem. C, 2010,114(50):22181-22189. doi: 10.1021/jp107405u

    22. [22]

      Hassan M A, Ashoush M A, Ebrahim F M, EL-Hady M M, Ahmad F, Abd El-Fattah Z M. Multiple optical features in binary-transition-metal borate glasses[J]. Opt. Quantum Electron., 2021,53(8)462. doi: 10.1007/s11082-021-03095-4

    23. [23]

      Ou G, Xu Y S, Wen B, Lin R, Ge B H, Tang Y, Liang Y W, Yang C, Huang K, Zu D, Yu R, Chen W X, Li J, Wu H, Liu L M, Li Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat. Commun., 2018,91302. doi: 10.1038/s41467-018-03765-0

    24. [24]

      LIU F Q, WANG L M, FAN D, XU L H, PAN H. Preparation and photocatalytic properties of TiO2/Cu2O/Pt composite hollow microspheres[J]. Chinese J. Inorg. Chem., 2023,39(2):300-308.  

    25. [25]

      Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts[J]. Appl. Catal. B-Environ., 2010,100(1/2):386-392.

    26. [26]

      Liu Y X, Zhang B S, Luo L F, Chen X Y, Wang Z L, Wu E L, Su D S, Huang W X. TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction[J]. Angew. Chem. Int. Ed., 2015,54(50):15260-15265. doi: 10.1002/anie.201509115

    27. [27]

      Luo S, Liu C W, Wan Y, Li W, Ma C H, Liu S X, Heeres H J, Zheng W Q, Seshan K, He S B. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity[J]. Appl. Surf. Sci., 2020,513145878. doi: 10.1016/j.apsusc.2020.145878

    28. [28]

      Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets[J]. J. Phys. Chem. C, 2010,114(30):13118-13125. doi: 10.1021/jp104488b

    29. [29]

      Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. J. Phys. Chem. B, 2003,107(50):13871-13879. doi: 10.1021/jp036158y

    30. [30]

      Suriyachai N, Chuangchote S, Laosiripojana N, Champreda V, Sagawa T. Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals[J]. ACS Omega, 2020,5(32):20373-20381. doi: 10.1021/acsomega.0c02334

    31. [31]

      Zhang K, Sun J M, E L, Ma C H, Luo S, Wu Z W, Li W, Liu S X. Effects of the pore structure of commercial activated carbon on the electrochemical performance of supercapacitors[J]. J. Energy Storage, 2022,45103457. doi: 10.1016/j.est.2021.103457

    32. [32]

      Uemura Y, Taniike T, Tada M, Morikawa Y, Iwasawa Y. Switchover of reaction mechanism for the catalytic decomposition of HCOOH on a TiO2 (110) surface[J]. J. Phys. Chem. C, 2007,111(44):16379-16386. doi: 10.1021/jp074524y

    33. [33]

      Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes[J]. Chem. Rev., 2014,114(19):9385-9454. doi: 10.1021/cr500061m

    34. [34]

      Nwosu U, Zhao H, Kibria M, Hu J G. Unlocking selective pathways for glucose photoreforming by modulating reaction conditions[J]. ACS Sustain. Chem. Eng., 2022,10(18):5867-5874. doi: 10.1021/acssuschemeng.1c08708

    35. [35]

      Zhou H R, Wang M, Kong F H, Chen Z W, Dou Z L, Wang F. Facet-dependent electron transfer regulates photocatalytic valorization of biopolyols[J]. J. Am. Chem. Soc., 2022,144(46):21224-21231. doi: 10.1021/jacs.2c08655

  • 加载中
    1. [1]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    2. [2]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    6. [6]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

Metrics
  • PDF Downloads(9)
  • Abstract views(945)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return