Preparation of nanoscale hafnium-containing metal-organic frameworks for X-ray-promoted chemodynamic synergistic therapy
- Corresponding author: Xiang-Mei LIU, iamxmliu@njupt.edu.cn
Citation:
Kang XIAO, Wang-Wang XIE, Xiang-Mei LIU. Preparation of nanoscale hafnium-containing metal-organic frameworks for X-ray-promoted chemodynamic synergistic therapy[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(11): 2033-2041.
doi:
10.11862/CJIC.2023.171
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin M R, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy[J]. Bioeng. Trans. Med., 2023. doi: 10.1002/btm2.10498
SUN S J, WU D, ZHANG J H, FAN M F, ZENG L Y. Manganese-doped gold nanoclusters with ultrasmall size and microenvironment-responsive visualized theranostics of tumor[J]. Sci. Sin. Chim., 2021,51(9):1259-1268.
CHEN X Y, LIU Y Y, BU W B. Chenodynamic therapy: integration of Fenton chemistry and biomedicine[J]. Sci. Sin. Chim., 2020,50(2):159-172.
ZHANG J X, HUANG W G, HUANG J L, MAI N Q. Highly conjugated tetraphenylporphrin-Ru(Ⅱ) bipyridine complex: Synthesis, optical properties, and photodynamic anticancer activity[J]. Chinese J. Inorg. Chem., 2022,38(12):2383-2391.
WANG Y W, CHEN J J, TIAN Z F, ZHU M, ZHU Y F. Potassium ferrate-loaded porphyrin-based (Ⅵ) metal-organic frameworks for combined photodymanic and chemodynamic tumor therapy[J]. J. Inorg. Mater., 2021,36(12):1305-1315.
LIU X M, TIAN K, XUE C F, HAN Y F, LIU S J, ZHAO Q. Application of X-ray excited phosphors in photodynamic therapy[J]. Prog. Chem., 2017,29(12):1488-1498.
Tian Q W, Xue F F, Wang Y R, Cheng Y Y, An L, Yang S P, Chen X Y, Huang G. Recent advances in enhanced chemodynamic therapy strategies[J]. Nano Today, 2021,39101162. doi: 10.1016/j.nantod.2021.101162
Wang X W, Zhong X Y, Liu Z, Cheng L. Recent progress of chemodynamic therapy-induced combination cancer therapy[J]. Nano Today, 2020,35100946. doi: 10.1016/j.nantod.2020.100946
Zhou Y F, Fan S Y, Feng L L, Huang X L, Chen X Y. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy[J]. Adv. Mater., 2021,33(48)2104223. doi: 10.1002/adma.202104223
LIU Y B, YU W S, WANG J X, DONG X T, FU Z D, LIU G X. Application of bismuth-based nanomaterials in imaging diagnosis and therapy for cancer[J]. Chinese J. Inorg. Chem., 2021,37(1):1-15.
Wang X, Zhang C Y, Du J F, Dong X H, Jian S, Yan L, Gu Z J, Zhao Y L. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au-Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization[J]. ACS Nano, 2019,13(5):5947-5958. doi: 10.1021/acsnano.9b01818
Zang Y, Gong L J, Mei L Q, Gu Z J, Wang Q. Bi2WO6 semiconductor nanoplates for tumor radiosensitization through high-Z effects and radiocatalysis[J]. ACS Appl. Mater. Interfaces, 2019,11(21):18942-18952. doi: 10.1021/acsami.9b03636
Cheng N N, Starkewolf Z, Davidson R A, Sharmah A, Lee C, Lien J, Guo T. Chemical enhancement by nanomaterials under X-ray irradiation[J]. J. Am. Chem. Soc., 2012,134(4):1950-1953. doi: 10.1021/ja210239k
Rancoule C, Magne N, Vallard A, Guy J B, Rodriguez-Lafrasse C, Deutsch E, Chargari C. Nanoparticles in radiation oncology: From bench-side to bedside[J]. Cancer Lett., 2016,375(2):256-262. doi: 10.1016/j.canlet.2016.03.011
Butterworth K T, McMahon S J, Currell F J, Prise K M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization[J]. Nanoscale, 2012,4(16):4830-4838. doi: 10.1039/c2nr31227a
Chen M H, Hanagata N, Ikoma T, Huang J Y, Li K Y, Lin C P, Lin F H. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment[J]. Acta Biomater., 2016,37:165-173. doi: 10.1016/j.actbio.2016.04.004
Marill J, Anesary N M, Zhang P, Vivet S, Borghi E, Levy L, Pottier A. Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect?[J]. Radiat. Oncol., 2014,9150. doi: 10.1186/1748-717X-9-150
Zhang P, Marin J, Darmon A, Anesary N M, Lu B, Paris S. NBTXR3 radiotherapy-activated functionalized hafnium oxide nanoparticles show efficient antitumor effects across a large panel of human cancer models[J]. Int. J. Nanomed., 2021,16:2761-2773. doi: 10.2147/IJN.S301182
Bonvalot S, Rutkowski P L, Thariat J, Carrere S, Ducassou A, Sunyach M P, Agoston P, Hong A, Mervoyer A, Rastrelli M, Moreno V, Li R K, Tiangco B, Herraez A C, Gronchi A, Mangel L, Sy-Ortin T, Hohenberger P, de Baere T, Le Cesne A, Helfre S, Saada-Bouzid E, Borkowska A, Anghel R, Co A, Gebhart M, Kantor G, Montero A, Loong H H, Verges R, Lapeire L, Dema S, Kacso G, Austen L, Moureau-Zabotto L, Servois V, Wardelmann E, Terrier P, Lazar A J, Bovee J V M G, Le Pechoux C, Papi Z. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): A multicentre, phase 2-3, randomised, controlled trial[J]. Lancet Oncol., 2019,20(8):1148-1159. doi: 10.1016/S1470-2045(19)30326-2
Field J A, Luna-Velasco A, Boitano S A, Shadman F, Ratner B D, Barnes C, Sierra-Alvarez R. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles[J]. Chemosphere, 2011,84(10):1401-1407. doi: 10.1016/j.chemosphere.2011.04.067
Bonvalot S, Rutkowski P L, Thariat J, Carrere S, Sunyach M P, Saada E, Agoston P, Hong A, Mervoyer A, Rastrelli M, Le Pechoux C, Moreno V, Li R, Tiangco B, Casado Herraez A, Gronchi A, Mangel L, Hohenberger P, Delannes M, Papai Z. A phase Ⅱ/Ⅲ trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall[J]. Ann. Oncol., 2018,29:753-753.
Singh D, Dilnawaz F, Sahoo S K. Challenges of moving theranostic nanomedicine into the clinic[J]. Nanomedicine, 2020,15(2):111-114. doi: 10.2217/nnm-2019-0401
Shatkin J A. The Future in Nanosafety[J]. Nano Lett., 2020,20(3):1479-1480. doi: 10.1021/acs.nanolett.0c00432
Gao S T, Han Y, Fan M, Li Z H, Ge K, Liang X J, Zhang J C. Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy[J]. Sci. China-Mater., 2020,63(12):2429-2434. doi: 10.1007/s40843-020-1513-8
WU Z Q, LIU X Y. Integrated application of metal-organic frameworks in cancer diagnosis and treatment[J]. Applied Chemical Industry, 2022,51(8):2396-2399.
Lan G X, Ni K Y, Veroneau S S, Song Y, Lin W B. Nanoscale metal-organic layers for radiotherapy-radiodynamic therapy[J]. J. Am. Chem. Soc., 2018,140(49):16971-16975. doi: 10.1021/jacs.8b11593
Lan G X, Ni K Y, Xu R Y, Lu K D, Lin Z K, Chan C, Lin W B. Nanoscale metal-organic layers for deeply penetrating X-ray-induced photodynamic therapy[J]. Angew. Chem. Int. Ed., 2017,56(40):12102-12106. doi: 10.1002/anie.201704828
Liu J J, Yang Y, Zhu W W, Yi X, Dong Z L, Xu X N, Chen M W, Yang K, Lu G, Jiang L X, Liu Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment[J]. Biomaterials, 2016,97:1-9. doi: 10.1016/j.biomaterials.2016.04.034
Lu K D, He C B, Guo N N, Chan C, Ni K Y, Lan G X, Tang H D, Pelizzari C, Fu Y X, Spiotto M T, Weichselbaum R R, Lin W B. Low-dose X-ray radiotherapy-radio dynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy[J]. Nat. Biomed. Eng., 2018,2(8):600-610. doi: 10.1038/s41551-018-0203-4
Ni K Y, Lan G X, Veroneau S S, Duan X P, Song Y, Lin W B. Nanoscale metal-organic frameworks for mitochondria-targeted radio-therapy-radiodynamic therapy[J]. Nat. Commun., 2018,94321. doi: 10.1038/s41467-018-06655-7
Yuan S, Qin J S, Lollar C T, Zhou H C. Stable metal-organic frameworks with group 4 metals: Current status and trends[J]. ACS Central Sci., 2018,4(4):440-450. doi: 10.1021/acscentsci.8b00073
LI M, HUANG X M, TAN W L. 7-Hydroxycoumarin fluorescent probe for the determination of 2, 4, 6-tri-nitrophenol in water[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2019,55(1):108-111.
Lammert M, Glißmann C, Reinsch H, Stock N. Synthesis and characterization of new Ce(Ⅳ)-MOFs exhibiting various framework topologies[J]. Cryst. Growth Des., 2017,17(3):1125-1131.
Gong T, Li Y L, Lv B, Wang H, Liu Y Y, Yang W, Wu Y L, Jiang X W, Gao H B, Zheng X P, Bu W B. Full-process radiosensitization based on nanoscale metal-organic frameworks[J]. ACS Nano, 2020,14(3):3032-3040.
Sun X, He G H, Xiong C X, Wang C Y, Lian X, Hu L F, Li Z K, Dalgarno S J, Yang Y W, Tian J. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy[J]. ACS Appl. Mater. Interfaces, 2021,13(3):3679-3693.
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Scale bar=200 µm.