Citation: Wang-Yang DUAN, Yue-Huan CHENG, Ji-Song HU, Xin-Guo MA, Ling PEI. Schottky barrier of blue phosphorus/graphene heterostructure regulated by the adsorption of oxygen atoms[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1980-1990. doi: 10.11862/CJIC.2023.161 shu

Schottky barrier of blue phosphorus/graphene heterostructure regulated by the adsorption of oxygen atoms

  • Corresponding author: Ling PEI, 47160162@qq.com
  • Received Date: 9 March 2023
    Revised Date: 16 September 2023

Figures(8)

  • Controlling the p-type transmission operation of nanoelectronics remains a major challenge in lowering the Schottky barrier. To solve this problem, we systematically investigated the effects of O atoms adsorption doped on the interlayer interactions and electronic properties of the BP/graphene (BP=blue phosphorus) heterostructures by first-principles calculations incorporating a semiempirical dispersion-correction scheme. The results show that the interfacial binding can be enhanced by O atom adsorption doped inside the interface. The height of the Schottky barrier can be adjusted by changing the concentration of O atom adsorption doped inside the interface. It is further found that by increasing the concentration of O atoms inside the interface, a low p - type Schottky barrier can be obtained, thereby achieving efficient charge transfer. Finally, it is confirmed that the redistribution of the interfacial charge leads to the movement of the Fermi level, which determines the height of the Schottky barrier.
  • 加载中
    1. [1]

      Chen H, Chen J, Ning P, Chen X, Liang J, Yao X, Chen D, Qin L, Huang Y, Wen Z. 2D heterostructure of amorphous cofeb coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation[J]. ACS Nano, 2021,15(7):12418-12428. doi: 10.1021/acsnano.1c04715

    2. [2]

      Zhang M, Ye M, Wang W, Ma C, Wang S, Liu Q, Lian T, Huang J, Lin Z. Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high- efficiency perovskite solar Cells[J]. Adv. Mater., 2020,32(28)e2000999. doi: 10.1002/adma.202000999

    3. [3]

      Tao Y P, Huang T, Ding C X, Feng Y, Tan D M, Wang F X, Xie Q J, Yao S Z. Few-layer phosphorene: An emerging electrode material for electrochemical energy storage[J]. Appl. Mater. Today, 2019,15:18-33. doi: 10.1016/j.apmt.2018.12.008

    4. [4]

      Fang R H, Cui X Y, Khan M A, Stampfl C, Ringer S P, Zheng R K. Strain-engineered ultrahigh mobility in phosphorene for terahertz transistors[J]. Adv. Electron. Mater., 2019,5(3)1800797. doi: 10.1002/aelm.201800797

    5. [5]

      Wu M, Fu H, Zhou L, Yao K, Zeng X C. Nine new phosphorene polymorphs with non- honeycomb structures: a much extended family[J]. Nano Lett., 2015,15(5):3557-3562. doi: 10.1021/acs.nanolett.5b01041

    6. [6]

      He C, Zhang C, Tang C, Ouyang T, Li J, Zhong J. Five low energy phosphorene allotropes constructed through gene segments recombination[J]. Sci. Rep., 2017,746431. doi: 10.1038/srep46431

    7. [7]

      Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y, Zhang J. Structure and properties of violet phosphorus and its phosphorene exfoliation[J]. Angew. Chem. Int. Ed., 2020,59(3):1074-1080. doi: 10.1002/anie.201912761

    8. [8]

      Zhu Z, Tomanek D. Semiconducting layered blue phosphorus: a computational study[J]. Phys. Rev. Lett., 2014,112(17)176802. doi: 10.1103/PhysRevLett.112.176802

    9. [9]

      Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets[J]. Sci. Rep., 2015,59961. doi: 10.1038/srep09961

    10. [10]

      Li J Z, Sun X T, Xu C Y, Zhang X Y, Pan Y Y, Ye M, Song Z G, Quhe R G, W Y Y, Zhang H, Guo Y, Yang J B, Pan F, Lu J. Electrical contacts in monolayer blue phosphorene devices[J]. Nano Res., 2018,11(4):1834-1849. doi: 10.1007/s12274-017-1801-2

    11. [11]

      Montes E, Schwingenschlögl U. High-Performance Field-Effect Transistors Based on alphaP and betaP[J]. Adv. Mater., 2019,31(18)e1807810. doi: 10.1002/adma.201807810

    12. [12]

      Zhu S C, Hu T Y, Yip C T, Yao K L, Lam C H. Interface effect between blue phosphorus and metals[J]. Phys. Lett. A, 2020,384(23)126554. doi: 10.1016/j.physleta.2020.126554

    13. [13]

      Li H L, Cui Y T, Luo H J, Wang T, Li D M. Tuneable Schottky barrier in van der Waals graphene-blue phosphorus heterojunction[J]. Physica B Condens. Matter, 2019,560:75-80. doi: 10.1016/j.physb.2019.02.027

    14. [14]

      Musso T, Kumar P V, Foster A S, Grossman J C. Graphene oxide as a promising hole injection layer for MoS2- based electronic devices[J]. ACS Nano, 2014,8(11):11432-11439. doi: 10.1021/nn504507u

    15. [15]

      Tung R T. Chemical bonding and fermi level pinning at metal-semiconductor interfaces[J]. Phys. Rev. Lett., 2000,84:6078-6081. doi: 10.1103/PhysRevLett.84.6078

    16. [16]

      Tung R T. The physics and chemistry of the Schottky barrier height[J]. Appl. Phys. Rev., 2014,1(1)011304. doi: 10.1063/1.4858400

    17. [17]

      Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X. Approaching the schottky- mott limit in van der waals metal-semiconductor junctions[J]. Nature, 2018,557(7707):696-700. doi: 10.1038/s41586-018-0129-8

    18. [18]

      Loh K P, Bao Q L, Ang P K, Yang J X. The chemistry of graphene[J]. J. Mater. Chem., 2010,20(12)2277. doi: 10.1039/b920539j

    19. [19]

      Zhu J D, Zhang J C, Hao Y. Tunable schottky barrier in blue phosphorus- graphene heterojunction with normal strain[J]. Jpn. J. Appl. Phys., 2016,55(8)080306. doi: 10.7567/JJAP.55.080306

    20. [20]

      Liang J M, Lei J T, Wang Y, Ding Y, Shen Y, Deng X H. High performance terahertz anisotropic absorption in graphene- black phos- phorus heterostructure*[J]. Chin. Phys. B, 2020,29(8)087805. doi: 10.1088/1674-1056/ab9cbf

    21. [21]

      Guangdong University of Technology. Preparation method of electropatterned black phosphorene/graphene electrode and apparatus thereof: CN202111004595.4. 2021-11-30.

    22. [22]

      Li S T, Zhang Y H, Huang H W. Black phosphorus- based hetero- structures for photocatalysis and photoelectrochemical water splitting[J]. J. Energy Chem., 2022,67:745-779. doi: 10.1016/j.jechem.2021.11.023

    23. [23]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    24. [24]

      Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett., 1980,45(7):566-569. doi: 10.1103/PhysRevLett.45.566

    25. [25]

      Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem., 2006,27(15):1787-1799. doi: 10.1002/jcc.20495

    26. [26]

      Ortmann F, Bechstedt F, Schmidt W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys. Rev. B, 2006,73(20)205101. doi: 10.1103/PhysRevB.73.205101

    27. [27]

      Ma X, Wei Y, Wei Z, He H, Huang C, Zhu Y. Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity[J]. J. Colloid Interface Sci., 2017,508:274-281. doi: 10.1016/j.jcis.2017.08.037

    28. [28]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    29. [29]

      Zhang J L, Zhao S, Han C, Wang Z Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z Y, Chen W. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus[J]. Nano Lett., 2016,16(8):4903-4908. doi: 10.1021/acs.nanolett.6b01459

    30. [30]

      Xie J F, Si M S, Yang D Z, Zhang Z Y, Xue D S. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations[J]. J. Appl. Phys., 2014,116(7)073704. doi: 10.1063/1.4893589

    31. [31]

      Flores M Z, Autreto P A, Legoas S B, Galvao D S. Graphene to graphane: a theoretical study[J]. Nanotechnology, 2009,20(46)465704. doi: 10.1088/0957-4484/20/46/465704

    32. [32]

      Xie Y Z, Liu Y, Zhao Y D, Tsang Y H, Lau S P, Huang H T, Chai Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode[J]. J. Mater. Chem. A, 2014,2(24):9142-9149. doi: 10.1039/C4TA00734D

    33. [33]

      Zhang J, Ren F, Deng M, Wang Y. Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first- principles study[J]. Phys. Chem. Chem. Phys., 2015,17(15):10218-10226. doi: 10.1039/C4CP06089J

    34. [34]

      Van de Walle C G, Neugebauer J. First- principles calculations for defects and impurities: Applications to III- nitrides[J]. J. Appl. Phys., 2004,95(8):3851-3879. doi: 10.1063/1.1682673

    35. [35]

      Chen X Z, Zhao X J, Kong Z Z, Ong W J, Li N. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride[J]. J. Mater. Chem. A, 2018,6(44):21941-21948. doi: 10.1039/C8TA06497K

    36. [36]

      Mapasha R E, Ukpong A M, Chetty N. Ab initiostudies of hydrogen adatoms on bilayer graphene[J]. Phys. Rev. B, 2012,85(20)205402. doi: 10.1103/PhysRevB.85.205402

    37. [37]

      Hua X T, Ma X G, Hu J S, He H, Xu G W, Huang C Y, Chen X B. Controlling electronic properties of MoS2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen[J]. Phys. Chem. Chem. Phys., 2018,20(3):1974-1983. doi: 10.1039/C7CP07303H

    38. [38]

      Ghosh B, Nahas S, Bhowmick S, Agarwal A. Electric field induced gap modification in ultrathin blue phosphorus[J]. Phys. Rev. B, 2015,91(11)115433. doi: 10.1103/PhysRevB.91.115433

    39. [39]

      Zheng H L, Yang H, Wang H X, Du X B, Yan Yu. Electronic and magnetic properties of nonmetal atoms doped blue phosphorene: First-principles study[J]. J. Magn. Magn. Mater., 2016,408:121-126. doi: 10.1016/j.jmmm.2016.02.014

    40. [40]

      Du A J, Sanvito S, Li Z, Wang D W, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z H, Amal R, Smith S C. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron- hole puddle, interfacial charge transfer, and enhanced visible light response[J]. J. Am. Chem. Soc., 2012,134(9):4393-4397. doi: 10.1021/ja211637p

    41. [41]

      Cai Y Q, Zhang G, Zhang Y W. Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Hetero-structures[J]. J. Phys. Chem. C, 2015,119(24):13929-13936. doi: 10.1021/acs.jpcc.5b02634

    42. [42]

      Bardeen J. Surface states and rectification at a Metal Semi-Conductor contact[J]. Phys. Rev., 1947,71(10):717-727. doi: 10.1103/PhysRev.71.717

    43. [43]

      Hu J S, Duan W Y, He H, Lv H, Huang C Y, Ma X G. A promising strategy to tune the Schottky barrier of a MoS2(1-x)Se2x/graphene heterostructure by asymmetric Se doping[J]. J. Mater. Chem. C, 2019,7(25):7798-7805. doi: 10.1039/C9TC01873E

  • 加载中
    1. [1]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    2. [2]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    8. [8]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    9. [9]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    12. [12]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    13. [13]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    14. [14]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    15. [15]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    16. [16]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    17. [17]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    18. [18]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    19. [19]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    20. [20]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

Metrics
  • PDF Downloads(0)
  • Abstract views(497)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return