Citation: Zhao-Hui HUO, Xue-Rong WEI, Yong HUANG, Ze-Yu CHEN, Wei-Bing CHEN, Qi-Tong ZHANG, Gang ZHANG, Geng-Long WEN, Jun-Jie SHI. Peanut shell-based porous carbon supported Pd-Co catalyst for electrooxidation of methanol in alkaline media[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 2020-2032. doi: 10.11862/CJIC.2023.157 shu

Peanut shell-based porous carbon supported Pd-Co catalyst for electrooxidation of methanol in alkaline media

  • Corresponding author: Zhao-Hui HUO, huozhaohui@gdei.edu.cn
  • Received Date: 15 December 2022
    Revised Date: 25 August 2023

Figures(6)

  • Peanut shells were used as raw materials and activated to peanut shell-based porous carbon (HC) by KOH. Nitrogen adsorption-desorption studies showed that the obtained porous carbon featured a total surface area as high as 1 645 m2·g-1. Pd-Co/HC catalyst was prepared by the impregnation reduction method, in which HC was the carrier. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that Co in the catalyst was mainly in the form of Co and CoO, and Co was entered into the crystal lattice of Pd and formed a Pd-Co alloy. The TEM image of Pd-Co/HC0.5-700 showed that numerous Pd-Co nanoparticles were successfully dispersed in the prepared porous carbon with a small particle size (ca. 4 nm). Pd-Co/HC0.5-700 exhibited apparent electrocatalytic activity, CO tolerance, and stability towards methanol electrooxidation in alkaline media. This remarkable high performance can be attributed to the large surface area of the biomass carrier and the doping of Co into Pd.
  • 加载中
    1. [1]

      Ma W, Wang N, Lu Y, Lu Z Y, Tang X, Li X T. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method[J]. New J. Chem., 2019,43:2888-2898. doi: 10.1039/C8NJ04973D

    2. [2]

      Genovese M, Lian K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes[J]. J. Mater. Chem., 2017,5(8):3939-3947. doi: 10.1039/C6TA10382K

    3. [3]

      Peng C, Yan X B, Wang R T, Lang J W, Ou Y J, Xue Q J. Promising activated carbons derived from waste tea leaves and their application in high-performance supercapacitors electrodes[J]. Electrochim. Acta, 2013,87(1):401-408.

    4. [4]

      Li X Y, Wu G J. Porous carbon from corn flour prepared by H3PO4 carbonization combined with KOH activation for supercapacitors[J]. J. Energy Eng., 2021,9:18-25.

    5. [5]

      Tan J X, Yang J W, Liang Y R, Zheng M T, Hu H, Dong H W, Liu Y L, Xiao Y. The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors[J]. J. Colloid Interface Sci., 2021,585:778-786. doi: 10.1016/j.jcis.2020.10.058

    6. [6]

      Ye Y Y, Qian T T, Jiang H. Co-loaded N-doped biochar as a high-performance oxygen reduction reaction electrocatalyst by combined pyrolysis of biomass[J]. Ind. Eng. Chem. Res., 2020,59(35):15614-15623. doi: 10.1021/acs.iecr.0c03104

    7. [7]

      Kasturi P R, Selvan R K, Lee S Y. Pt decorated Artocarpus heterophyllus seed derived carbon as an anode catalyst for DMFC application[J]. RSC Adv., 2016,6(67):62680-62694. doi: 10.1039/C6RA05833G

    8. [8]

      Li R, Zhang Y L, Chu W L, Chen Z X, Wang J L. Adsorptive removal of antibiotics from water using peanut shells from agricultural waste[J]. RSC Adv., 2018,8:13546-13555. doi: 10.1039/C7RA11796E

    9. [9]

      Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy Environ. Sci., 2015,8(3):941-955. doi: 10.1039/C4EE02986K

    10. [10]

      Dong S Y, Shen L F, Li H S, Nie P, Zhu Y Y, Sheng Q, Zhang X G. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors[J]. J. Mater. Chem., 2015,3(42):21277-21283. doi: 10.1039/C5TA05714K

    11. [11]

      Fang J, Gao B, Zimmerman A R, Ro K S, Chen J J. Physically (CO2) activated hydrochars from hickory and peanut hull: Preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium[J]. RSC Adv., 2016,6(30):24906-24911. doi: 10.1039/C6RA01644H

    12. [12]

      FANG H Y, ZHAO J C, KANG X Y, LI Y C. Ni/biomass-derived nitrogen-doped porous carbon nanocomposites: preparation and electrocatalysis for methanol oxidation reaction[J]. Chinese J. Inorg. Chem., 2022,38(10):1959-1969. doi: 10.11862/CJIC.2022.188

    13. [13]

      Liu Y, Chi M F, Mazumder V. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol[J]. Chem. Mater., 2011,23(18):4199-4203. doi: 10.1021/cm2014785

    14. [14]

      Habibi B, Dadashpour E. Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media[J]. Int. J. Hydrog. Energy, 2013,38(13):5425-5434. doi: 10.1016/j.ijhydene.2012.06.045

    15. [15]

      Shen J F, Yan B, Shi M, Ma H W, Li N, Ye M X. Fast and facile preparation of reduced graphene oxide supported Pt-Co electrocatalyst for methanol oxidation[J]. Mater. Res. Bull., 2012,47(6):1486-1493. doi: 10.1016/j.materresbull.2012.02.025

    16. [16]

      Ding L X, Wang A L, Li G R, Liu Z Q, Zhao W X, Su C Y, Tong Y X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J]. J. Am. Chem. Soc., 2012,134(13):5730-5733. doi: 10.1021/ja212206m

    17. [17]

      Zhao Y, Fan L Z, Ren J L, Hong B. Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell[J]. Int. J. Hydrog. Energy, 2014,39:4544-4557. doi: 10.1016/j.ijhydene.2013.12.202

    18. [18]

      Chu Y H, Shul Y G. Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells[J]. Int. J. Hydrog. Energy, 2010,35(20):11261-11270. doi: 10.1016/j.ijhydene.2010.07.062

    19. [19]

      Sahu S C, Samantarat A K, Dash A, Juluri R R, Sahu R K, Mishra B K, Jena B K. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst[J]. Nano Res., 2013,6(9):635-643. doi: 10.1007/s12274-013-0339-1

    20. [20]

      Kumar K S, Haridoss P, Seshadri S K. Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation[J]. Surf. Coat. Technol., 2008,202(9):1764-1770. doi: 10.1016/j.surfcoat.2007.07.035

    21. [21]

      Wang Y, Sheng Z M, Yang H, Jiang S P, Li C M. Electrocatalysis of carbon black - or activated carbon nanotubes-supported Pd-Ag towards methanol oxidation in alkaline media[J]. Int. J. Hydrog. Energy, 2010,35(19):10087-10093. doi: 10.1016/j.ijhydene.2010.07.172

    22. [22]

      Qiu C C, Shang R, Xie Y F, Li C Y, Ma H Y. Electrocatalytic activity of bimetallic Pd-Ni thin films towards the oxidation of methanol and ethanol[J]. Mater. Chem. Phys., 2010,120(2/3):323-330.

    23. [23]

      YUAN Q X, CHEN W M, LÜ X R. Effect of one-dimensional/two-dimensional composite carbon support on methanol oxidation performance of pd catalysts[J]. Chinese J. Inorg. Chem., 2022,38(11):2165-2172.  

    24. [24]

      Li X W, Huang Q H, Zou Z Q, Xia B J, Yang H. Low temperature preparation of carbon-supported Pd-Co alloy electrocatalysts for methanol-tolerant oxygen reduction reaction[J]. Electrochim. Acta, 2008,53(22):6662-6667. doi: 10.1016/j.electacta.2008.04.032

    25. [25]

      Tominaka S, Momma T, Osaka T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: Preparation and characterization[J]. Electrochim. Acta, 2008,53(14):4679-4686. doi: 10.1016/j.electacta.2008.01.069

    26. [26]

      Noto V D, Negro E, Lavina S, Gross S, Pace G. Pd-Co carbon-nitride electrocatalysts for polymer electrolyte fuel cells[J]. Electrochim. Acta, 2008,53(4):1604-1617.

    27. [27]

      Morales-Acosta D, Ledesma-Garcia J, Godinez L A, Rodríguez H G, Álvarez-Contreras L, Arriaga L G. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation[J]. J. Power Sources, 2010,195(2):461-465. doi: 10.1016/j.jpowsour.2009.08.014

    28. [28]

      Lei H, Zhang Q B. In situ electrochemical redox tuning of Pd-Co hybrid electrocatalysts for high-performance methanol oxidation: Strong metal-support interaction[J]. J. Colloid Interface Sci., 2021,588:476-484. doi: 10.1016/j.jcis.2020.12.091

    29. [29]

      Bernardo B, Claudio Z, Fabrizio G, Sonia C, Francesco B, Giuseppe A, Rosario M, Filippo P, Philippe M, Rosalinda I. Pd-Co-based electrodes for hydrogen production by water splitting in acidic media[J]. Materials, 2023,16(2):474-474. doi: 10.3390/ma16020474

    30. [30]

      Chen L, Zhang Y Z, Lin C H. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries[J]. J. Mater. Chem., 2014,2(25):9684-9690. doi: 10.1039/C4TA00501E

    31. [31]

      Wang Y, Wang X, Li C M. Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline medi[J]. Appl. Catal. B-Environ., 2010,99(1/2):229-234.

    32. [32]

      Celiktas M S, Alptekin F M. Conversion of model biomass to carbon-based material with high conductivity by using carbonization[J]. Energy, 2019,188116089. doi: 10.1016/j.energy.2019.116089

    33. [33]

      Shendage S S, Patil U B, Nagarkar J M. Electrochemical deposition of highly dispersed palladium nanoparticles on nafion-graphene film in presence of ferrous ions for ethanol electrooxidation[J]. Fuel Cells, 2013,13(3):364-370. doi: 10.1002/fuce.201300043

    34. [34]

      Rezaei M, Tabaian S H, Haghshenas D F. The role of electrodeposited Pd catalyst loading on the mechanisms of formic acid electrooxidation[J]. Electrocatalysis, 2014,5(2):193-203. doi: 10.1007/s12678-013-0181-y

    35. [35]

      Profeti L P R, Profeti D, Olivi P. Pt-Ru O2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell application[J]. Int. J. Hydrog. Energy, 2009,34(6):2747-2757. doi: 10.1016/j.ijhydene.2009.01.011

    36. [36]

      Hu Y, Mei T, Li J H, Wang J Y, Wang X B. Porous SnO2 hexagonal prism-attached Pd/rGO with enhanced electrocatalytic activity for methanol oxidation[J]. RSC Adv., 2017,7:29909-29915. doi: 10.1039/C7RA03659K

    37. [37]

      Shu C Y, Yang X D, Chen Y Z, Fang Y, Zhou Y P, Liu Y G. Nano-Fe3O4 grown on porous carbon and its effect on the oxygen reduction reaction for DMFCs with a polymer fiber membrane[J]. RSC Adv., 2016,6:37012-37017. doi: 10.1039/C6RA03173K

    38. [38]

      Liu J P, Ye J P, Xu C W, Jiang S P, Tong Y S. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J]. Electrochem. Commun., 2007,9(9):2334-2339. doi: 10.1016/j.elecom.2007.06.036

    39. [39]

      Xu M W, Gao G Y, Zhou W J. Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution[J]. J. Power Sources, 2008,175(1):217-220. doi: 10.1016/j.jpowsour.2007.09.069

    40. [40]

      Wang W M, Zheng D, Du C, Zou Z Q, Zhang X G, Xia B J, Yang H, Akins D L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction[J]. J. Power Sources, 2007,167(2):243-249. doi: 10.1016/j.jpowsour.2007.02.013

    41. [41]

      Mancharan R, Goodenough J B. Methanol oxidation in acid on ordered NiTi[J]. J. Mater. Chem., 1992,2:875-887. doi: 10.1039/jm9920200875

    42. [42]

      Rostami H, Rostami A A, Omrani A. Investigation on ethanol electrooxidation via electrodeposited Pd-Co nanostructures supported on graphene oxid[J]. Int. J. Hydrog. Energy, 2015,40(33):10596-10604.

    43. [43]

      Singh R N, Sharma C S. Preparation of bimetallic Pd-Co nanoparticles on graphene support for use as methanol tolerant oxygen reduction electrocatalyst[J]. Eng. Technol. Appl. Sci. Res., 2012,2(6):295-301. doi: 10.48084/etasr.215

    44. [44]

      Hammer B, Nørskov J K. Theoretical surface science and catalysis—Calculations and concepts[J]. Adv. Catal., 2000,45:71-129.

    45. [45]

      Zhang Q, Zang B, Wang S Z. Surfactant-free synthesis of porous Au by a urea complex[J]. RSC Adv., 2019,9:23081-23085.

    46. [46]

      Rostami H, AliRostami A, Omrani A. Investigation on ethanol electrooxidation via electrodeposited Pd-Co nanostructures supported on graphene oxide[J]. Int. J. Hydrog. Energy, 2015,40(33):10596-10604.

    47. [47]

      Maiyalagan T, Scott K. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium[J]. J. Power Sources, 2010,195(16):5246-5251.

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    3. [3]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    6. [6]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    7. [7]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    8. [8]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    9. [9]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    10. [10]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    11. [11]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    12. [12]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    13. [13]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    16. [16]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    17. [17]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    18. [18]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    19. [19]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    20. [20]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

Metrics
  • PDF Downloads(4)
  • Abstract views(481)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return