Perovskite Ba0.97Ca0.03Sn0.08Ti0.92O3-δ as polysulfide immobilizer for lithium-sulfur batteries
- Corresponding author: Jiao-Jing SHAO, 17685110316@163.com Quan-Sheng OUYANG, 17685110316@163.com
Citation:
Xu WU, Wei CHEN, Bo WANG, Jiao-Jing SHAO, Quan-Sheng OUYANG. Perovskite Ba0.97Ca0.03Sn0.08Ti0.92O3-δ as polysulfide immobilizer for lithium-sulfur batteries[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(9): 1800-1806.
doi:
10.11862/CJIC.2023.145
Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries[J]. Acc. Chem. Res., 2012,46(5):1125-1134.
Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2018,30(22)1705590. doi: 10.1002/adma.201705590
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014,114(23):11751-11787. doi: 10.1021/cr500062v
Shi H F, Lv W, Zhang C, Wang D W, Ling G W, He Y B, Kang F Y. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up[J]. Adv. Funct. Mater., 2018,28(38)1800508. doi: 10.1002/adfm.201800508
Ma L B, Lv Y H, Wu J X, Chen Y M, Jin Z. Recent Advances in emerging non-lithium metal-sulfur batteries: A review[J]. Adv. Energy. Mater., 2021,11(24)2100770. doi: 10.1002/aenm.202100770
Zhao Q N, Zhao K Q, Ji G P, Guo X L, Han M, Wen J, Ren Z L, Zhao S C, Gao Z, Wang R H, Li M, Sun K, Hu N, Xu C H. High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N, P-codoped mesoporous carbon as sulfur host for Li-S batteries[J]. Chem. Eng. J., 2019,361:1043-1052. doi: 10.1016/j.cej.2018.12.153
SUN L, XIE J, CHENG F, CHEN R Y, ZHU Q L, JIN Z. Rapid construction of two-dimensional N, S-co-doped porous carbon for realizing high-performance lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(6):1189-1198.
Yang D, Ni W, Cheng J L, Wang Z P, Wang T, Guan Q, Zhang Y, Wu H, Li X D, Wang B. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium-sulfur batteries[J]. Appl. Surf. Sci., 2017,413:209-218. doi: 10.1016/j.apsusc.2017.04.046
Sun L, Liu Y X, Zhang K Q, Cheng F, Jiang R Y, Liu Y Q, Zhu J, Jin Z, Pang H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries[J]. Nano Res., 2022,15(6):5105-5113. doi: 10.1007/s12274-022-4134-8
Yan W, Wei J, Chen T, Duan L, Wang L, Xue X L, Cehn R P, Kong W H, Lin H N, Li C H, Jin Z. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes[J]. Nano Energy., 2021,80105510. doi: 10.1016/j.nanoen.2020.105510
Song X, Wang S Q, Bao Y, Liu G X, Sun W P, Ding L X, Liu H K, Wang H H. A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017,5(15):6832-6839. doi: 10.1039/C7TA01171G
Chen K, Cao J, Lu Q Q, Wang Q G, Yao M J, Han M M, Niu Z Q, Chen J. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries[J]. Nano Res., 2018,11(3):1345-1357. doi: 10.1007/s12274-017-1749-2
Ma L B, Zhu G Y, Zhang W J, Zhao P Y, Hu Y, Wang Y R, Wang L, Chen R P, Chen T, Tie Z X, Liu J, Jin Z. Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries[J]. Nano Res., 2018,11:6436-6446. doi: 10.1007/s12274-018-2168-8
GAO R, WANG Z Y, WANG L, CHEN P, LIU S, MA Z P, SHAO G J. Ni2P nanosheets on graphene as sulfur-based composite cathode material for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(4):685-694.
Guo P Q, Liu D Q, Liu Z G, Shang X N, Liu Q M, He D Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries[J]. Electrochim. Acta, 2017,256:28-36. doi: 10.1016/j.electacta.2017.10.003
Li Y Y, Cai Q F, Wang L, Li Q W, Peng X, Gao B, Huo K F, Chu P K. Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2016,8(36):23784-23792. doi: 10.1021/acsami.6b09479
Ni L, Zhao G G, Wang Y T, Wu Z, Wang W, Liao Y Y, Yang G, Diao G W. Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries[J]. Chem. Asian J., 2017,12(24):3128-3134. doi: 10.1002/asia.201701343
PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 hollow spheres as high efficient sulfur host for Li-S batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.
Sun L, Liu Y X, Xie J, Fan L L, Wu J, Jiang R Y, Jin Z. Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of CNTs as multifunctional self-supporting medium for efficient lithium-sulfur batteries[J]. Chem. Eng. J., 2023,451138370. doi: 10.1016/j.cej.2022.138370
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017,814627. doi: 10.1038/ncomms14627
CHEN P, LIU Y R, PAN P F, FANG Y N, SHAN Q, FENG X M, LIU R Q, LIN X J, MA Y W. Assembly and application for Li-S batteries of multi-walled carbon nanotube-vanadium nitride hollow sphere composite[J]. Chinese J. Inorg. Chem., 2021,37(7):1184-1190.
NING D Z, SUN H G. Performance of the inward radial hollow TiN particles as cathodes for lithium-sulfur batteries[J]. Chinese J. Inorg. Chem., 2022,38(7):1375-1381.
Zeng S B, Li L G, Xie L H, Zhao D K, Wang N, Chen S W. Conducting polymers crosslinked with sulfur as cathode materials for high-rate, ultralong-life lithium-sulfur batteries[J]. ChemSusChem, 2017,10(17):3378-3386. doi: 10.1002/cssc.201700913
Wang H Q, Zhang W C, Xu J Z, Guo Z P. Advances in polar materials for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018,28(38)1707520. doi: 10.1002/adfm.201707520
Zhang S Y, Rong X C, Li T, Ren W J, Ren H, Zhi L J, Wu M B, Li Z T. Theoretical kinetic quantitative calculation predicted the expedited polysulfides degradation[J]. Nano Res., 2022. doi: 10.1007/s12274-022-5061-4
Wang Y K, Zhang R F, Chen J, Wu H, Lu S Y, Wang K, Li H L, Harris C, Xi K, Kumar R V, Ding S J. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering[J]. Adv. Energy Mater., 2019,9(24)1900953. doi: 10.1002/aenm.201900953
Luo D, Li G R, Deng Y P, Zhang Z, Li J G, Liang R L, Li M, Jiang Y, Zhang W W, Liu Y S, Lei W, Yu A P, Chen Z W. Synergistic engineering of defects and architecture in binary metal chalcogenide toward fast and reliable lithium-sulfur batteries[J]. Adv. Energy Mater., 2019,9(18)1900228. doi: 10.1002/aenm.201900228
Ou G, Yang C, Liang Y W, Hussain N, Ge B H, Huang K, Xu Y S, Wei H H, Zhang R Y, Wu H. Surface engineering of perovskite oxide for bifunctional oxygen electrocatalysis[J]. Small Methods, 2019,3(2)1800279. doi: 10.1002/smtd.201800279
Jung J I, Park S, Kim M G, Cho J. Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts[J]. Adv. Energy Mater., 2015,5(24)1501560. doi: 10.1002/aenm.201501560
Kong L, Chen X, Li B Q, Peng H J, Huang J Q, Xie J, Zhang Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries[J]. Adv. Mater., 2018,30(2)1705219. doi: 10.1002/adma.201705219
Zhao Z Y, Li G R, Wang Z, Feng M, Sun M Z, Xue X X, Liu R P, Jia H S, Wang Z Z, Zhang W, Li H B, Chen Z W. Black BaTiO3 as multi-functional sulfur immobilizer for superior lithium sulfur batteries[J]. J. Power Sources, 2019,434226729. doi: 10.1016/j.jpowsour.2019.226729
Xie K Y, You Y, Yuan K, Yuan K, Lu W, Zhang K, Xu F, Ye M, Ke S M, Shen C, Zeng X R, Fan X L, Wei B Q. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement[J]. Adv. Mater., 2017,29(6)1604724. doi: 10.1002/adma.201604724
Zhang Z X, Zhang L, Liu Y Y, Yu C, Yan X L, Xu B, Wang L M. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries[J]. J. Alloy. Compd., 2018:227-235.
Ding R, Zhang X, Sun X W. Organometal trihalide perovskites with intriguing ferroelectric and piezoelectric properties[J]. Adv. Funct. Mater., 2017,27(43)1702207. doi: 10.1002/adfm.201702207
Rabuffetti F A, Brutchey R L. Structural evolution of BaTiO3 nanocrystals synthesized at room temperature[J]. J. Am. Chem. Soc., 2012,134(22)9475. doi: 10.1021/ja303184w
Barbero B P, Eloy P, Cadús L. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS[J]. Appl. Surf. Sci., 2006,253(3):1489-1493. doi: 10.1016/j.apsusc.2006.02.035
Xu L L, Zhao H Y, Sun M Z, Huang B L, Wang J W, Xia J L, Li N, Yin D D, Luo M, Luo F, Du Y P, Yan C H. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2019,131(33):11615-11620.
Lin H B, Zhang S L, Zhang T R, Ye H L, Yao Q F, Zheng G Y W, Lee J Y. Elucidating the catalytic activity of oxygen deficiency in the polysulfide conversion reactions of lithium-sulfur batteries[J]. Adv. Energy Mater., 2018,8(30)1801868. doi: 10.1002/aenm.201801868
Zhang L, Wang Y, Niu Z Q, Chen J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2019,141:400-416. doi: 10.1016/j.carbon.2018.09.067
Yan Z L. Symmetric cells as an analytical tool for battery research: Assembly, operation, and data analysis strategies[J]. J. Electrochem. Soc., 2023,170(2)020521. doi: 10.1149/1945-7111/acaf42
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Inset in c: Select electron diffraction pattern.