Citation: Yan XU, Zhao-Wen LIU, Lei CUI. O—P—O bridged Mn-Schiff base complexes: Syntheses, structures, and magnetic properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1628-1636. doi: 10.11862/CJIC.2023.126 shu

O—P—O bridged Mn-Schiff base complexes: Syntheses, structures, and magnetic properties

Figures(7)

  • Two new trinuclear complexes consisting of Mn-Schiff base (SB) building block bridged by O—P—O units, namely [Mn3(salen)3(L)]ClO4·H2O (1) and [Mn3(salpn)3(L)]ClO4 (2), where salen2-=N, N′-(ethylene)bis(salicylideneiminato), salpn2-=N, N′-(propylene)bis(salicylideneiminato), H2L=5-(ethoxycarbonyl)-naphthalen-1-yl)phosphonic acid, were synthesized by using solvent evaporation and characterized by using single-crystal X-ray diffraction, IR, and powder X-ray diffraction. Complexes 1 and 2 are isostructural and show similar trinuclear [Mn3(SB)3(L)]+, in which O—P—O groups among the phosphonate ligand bridge three Mn(Ⅲ) ion centers, and an additional disordered ClO4- as a balance anion. These [Mn3(SB)3(L)]+ trimers are assembled by π-π interaction from the neighboring complexes, giving rise to a supramolecular 1D wave chain. Magnetic measurements of 1 and 2 indicate that the three Mn(Ⅲ) ions in the asymmetric structure are two with high spin and one with low spin, while dominant antiferromagnetic interactions are mediated between the Mn(Ⅲ) ions.
  • 加载中
    1. [1]

      Gao S. Molecular nanomagnets and related phenomena. Berlin: Springer-Verlag, 2015.

    2. [2]

      Winpenny R E P. Molecular cluster magnets. Singapore: World Scientific, 2012.

    3. [3]

      Gatteschi D S, Sessoli R, Villain J. Molecular nanomagnets. Oxford: Oxford University Press, 2006.

    4. [4]

      ZHANG K, WANG H S, YU L Y, CHEN Y, PAN Z Q. Research progress and prospect on the first series transition metal-Dy single molecule magnets[J]. Chinese J. Inorg. Chem., 2020,36(12):2205-2226.  

    5. [5]

      ZHU Z H, GOU M, LI X L, TANG J K. Recent advance on single molecule magnets[J]. Sci. Sin. Chim., 2018,48(8):790-803.  

    6. [6]

      REN M, ZHENG L M. Lanthanide-based single molecule magnets[J]. Acta Chim. Sini., 2015,73(11):1091-1113.  

    7. [7]

      ZHANG L, ZENG S Y, LIU T, SUN J S, DOU J M, JIANG J Z. Mixed tetrapyrrole terbium triple-decker single molecule magnets with bulky inorganic polyhedral oligomeric silsesquioxanes moieties at outer porphyrin peripheries[J]. Chinese J. Inorg. Chem., 2015,31(9):1761-1773.  

    8. [8]

      Lu Z L, Yuan M, Pan F, Gao S, Zhang D Q. Syntheses, crystal structures, and magnetic characterization of five new dimeric manganese(Ⅲ) tetradentate Schiff base complexes exhibiting single-molecule-magnet behavior[J]. Inorg. Chem., 2006,45:3538-3548. doi: 10.1021/ic051648l

    9. [9]

      Frost J M, Harriman K L M, Murugesu M. The rise of 3d single-ion magnets in molecular magnetism: Towards materials from molecules?[J]. Chem. Sci., 2016,7:2470-2491. doi: 10.1039/C5SC03224E

    10. [10]

      Chen Y C, Liu J L, Wernsdorfer W, Liu D, Chibotaru L F, Chen X M, Tong M L. Hyperfine interaction driven suppression of quantum tunneling at zero field in a holmium(Ⅲ) single-ion magnet[J]. Angew. Chem. Int. Ed., 2017,56:4996-5000. doi: 10.1002/anie.201701480

    11. [11]

      Liu B C, Ge N, Zhai Y Q, Zhang T, Ding Y S, Zheng Y Z. An imido ligand significantly enhances the effective energy barrier of dysprosium(Ⅲ) single-molecule magnets[J]. Chem. Commun., 2019,55:9355-9358. doi: 10.1039/C9CC04687A

    12. [12]

      Zhang W X, Shiga T, Miyasaka H, Yamashita M. New approach for designing single-chain magnets: Organization of chains via hydrogen bonding between nucleobases[J]. J. Am. Chem. Soc., 2012,134:6908-6911. doi: 10.1021/ja300152k

    13. [13]

      Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clerac R. Single-chain magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] made of Mn-Fe-Mn trinuclear single-molecule magnet with an ST=9/2 spin ground state[J]. J. Am. Chem. Soc., 2005,127:3090-3099. doi: 10.1021/ja0468123

    14. [14]

      Bhowmick I, Hillard E A, Dechambenoit P, Coulon C, Harris T D, Clerac R. A canted antiferromagnetic ordered phase of cyanido-bridged Mn2Re single-chain magnets[J]. Chem. Commun., 2012,48:9717-9719. doi: 10.1039/c2cc34066f

    15. [15]

      Wang T T, Ren M, Bao S S, Liu B, Pi L, Cai Z S, Zheng Z H, Xu Z L, Zheng L M. Effect of structural isomerism on magnetic dynamics: from single molecule magnet to single-chain magnet[J]. Inorg. Chem., 2014,53:3117-3125. doi: 10.1021/ic403042p

    16. [16]

      Miyasaka H, Clerac R, Ishii T, Chang H C, Kitagawa S, Yamashita M. Out-of-plane dimers of Mn(Ⅲ) quadridentate Schiff-base complexes with saltmen2- and naphtmen2- ligands: Structure analysis and ferromagnetic exchange[J]. J. Chem. Soc. Dalton Trans., 2002(7):1528-1534. doi: 10.1039/b111094m

    17. [17]

      Aono Y, Yoshida H, Katoh K, Breedlove B K, Kagesawa K, Yamashita M. Tuning interchain interactions in two-dimensional networks of Mn Schiff-base complexes and dicarboxylic acids by varying the linker[J]. Inorg. Chem., 2015,54:7096-7102. doi: 10.1021/acs.inorgchem.5b01154

    18. [18]

      Goswami S, Singha S, Saha I, Chatterjee A, Dey S K, García C J G, Frontera A, Kumar S, Saha R. Selective metal-ligand bond-breaking driven by weak intermolecular interactions: From metamagnetic Mn(Ⅲ)-monomer to hexacyanoferrate(Ⅱ)-bridged metamagnetic Mn2Fe trimer[J]. Inorg. Chem., 2020,59(12):8487-8497. doi: 10.1021/acs.inorgchem.0c00909

    19. [19]

      Liu X G, Bao S S, Huang J, Otsubo K, Feng J S, Ren M, Hu F C, Sun Z, Zheng L M, Wei S, Kitagawa H. Homochiral metal phosphonate nanotubes[J]. Chem. Commun., 2015,51:15141-15144. doi: 10.1039/C5CC05647K

    20. [20]

      Huang J, Ding H M, Xu Y, Zeng D, Zhu H, Zang D M, Bao S S, Ma Y Q, Zheng L M. Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination polymers[J]. Nat. Commun., 2017,8:2131-2142. doi: 10.1038/s41467-017-02260-2

    21. [21]

      Liu B, Liu J C, Shen Y, Feng J S, Bao S S, Zheng L M. Polymorphic layered copper phosphonates: Exfoliation and proton conductivity studies[J]. Dalton Trans., 2019,48:6539-6545. doi: 10.1039/C9DT00970A

    22. [22]

      Jia J G, Feng J S, Huang X D, Bao S S, Zheng L M. Homochiral iron(Ⅱ)-based metal-organic nanotubes: Metamagnetism and selective nitric oxide adsorption in a confined channel[J]. Chem. Commun., 2019,55:2825-2828. doi: 10.1039/C9CC00506D

    23. [23]

      Wang T T, Ren M, Bao S S, Cai Z S, Liu B, Zheng Z H, Xu Z L, Zheng L M. The O—P—O bridged Mn2(salen)2 chains showing coexistence of single chain magnet and metamagnet behavior[J]. Dalton Trans., 2015,44:4271-4279. doi: 10.1039/C4DT03888F

    24. [24]

      Wang T T, Bao S S, Huang J, Li Y Z, Zheng L M. Chiral one-dimensional O—P—O bridged Mn-Schiff base complexes[J]. Dalton Trans., 2013,42:1842-1847. doi: 10.1039/C2DT32171H

    25. [25]

      Kagesawa K, Nishimura Y, Yoshida H, Breedlove B K M, Yamashita H. Slow relaxation of the magnetization observed in an antiferromagnetically ordered phase for SCM-based two-dimensional layered compounds[J]. Dalton Trans., 2017,46:3170-3178. doi: 10.1039/C6DT04636C

    26. [26]

      Wang T T, Ren Min, Bao S S, Zheng L M. Switching on single-molecule-magnet behavior in Mn-Schiff base out-of-plane dimers by the phosphonate terminal ligand[J]. Eur. J. Inorg. Chem., 2014:1042-1050.

    27. [27]

      Przychodzeń P, Lewiński K, Bałanda M, Pełka R, Rams M, Wasiutyński T, Guyard D C, Sieklucka B. Crystal structures and magnetic properties of two low-dimensional materials constructed from [Mn(salen)H2O]+ and [M(CN)8]3-/4- (M=Mo or W) precursors[J]. Inorg. Chem., 2004,43:2967-2974. doi: 10.1021/ic035464n

    28. [28]

      Zheng T, Bao S S, Ren M, Zheng L M. Cobalt phosphonates based on 4-(ethoxycarbonyl)-naphthalen-1-yl)phosphonic acid[J]. Dalton Trans., 2013,42:16396-16402. doi: 10.1039/c3dt52125g

    29. [29]

      Kahn O. Molecular magnetism. New York, Weinheim, and Cambridge: VCH Publishers, Inc., 1993.

    30. [30]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    31. [31]

      Sheldrick G M. SHELXT-Integrated space-group and crystal-structure determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    32. [32]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    33. [33]

      SAINT, Program for data extraction and reduction. Siemens Analytical X-ray Instruments, Madison, WI, 1994-1996.

    34. [34]

      SHELXTL Version 5.0, Reference manual. Siemens Industrial Automation, Analytical Instruments, Madison, WI, 1995.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    3. [3]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    4. [4]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    11. [11]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    18. [18]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    19. [19]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    20. [20]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

Metrics
  • PDF Downloads(1)
  • Abstract views(1909)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return