Citation: Ying-Xin ZHAO, Hao HU, Xin ZHOU, Shui-Jin YANG, Yun YANG. Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(8): 1553-1563. doi: 10.11862/CJIC.2023.114 shu

Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites

Figures(13)

  • A novel MOF-808/BiOCl composite heterojunction material was prepared by combining highly stable MOF-808 with BiOCl by simple hydrothermal method. The photocatalytic performance of composite MOF-808/BiOCl on ciprofloxacin (CIP) was investigated using CIP as a contaminant. Compared with pure BiOCl, the performance of composite materials has been improved. Among them, composites containing 10% MOF-808 (MOF-808/BiOCl-10%) showed the best photocatalytic activity. Within 20 min of UV light irradiation, the photocatalytic degradation efficiency of CIP by MOF-808/BiOCl-10% was as high as 94.7%. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), fluorescence spectroscopy, ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), photocurrent, electrochemical impedance, and other characterization techniques were performed to analyze the phase composition, morphology and photoelectrochemical properties of materials. The formation of MOF-808 and BiOCl heterojunctions is beneficial to suppress the compounding efficiency of photogenerated carriers and improving photocatalytic activity. The UV-Vis diffuse reflectance spectroscopy results show that the light absorption range of MOF-808/BiOCl-10% material is improved. At the same time, radical trapping experiments were carried out. It indicates that ·O2- and h+ are the active species that play a major role in the degradation of CIP by MOF-808/BiOCl-10%. Based on the above experimental data, the possible photocatalytic mechanism of MOF-808/BiOCl composites was proposed.
  • 加载中
    1. [1]

      Saini G, Kalra S, Kaur U. The purification of wastewater on a small scale by using plants and sand filter[J]. Appl. Water Sci., 2021,11(4)68. doi: 10.1007/s13201-021-01406-4

    2. [2]

      Russell J N, Yost C K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems[J]. Chemosphere, 2021,263128177. doi: 10.1016/j.chemosphere.2020.128177

    3. [3]

      ZHOU X, ZHANG Z, CHEN P, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of Br-doped Br2WO6 microsphere[J]. Chinese J. Inorg. Chem., 2022,38(9):1716-1728.  

    4. [4]

      Zewde A, Zhang L, Li Z, Odey E A. A review of the application of sonophotocatalytic process based on advanced oxidation process for degrading organic dye[J]. Rev. Environ. Health, 2019,34(4):365-375. doi: 10.1515/reveh-2019-0024

    5. [5]

      Qi K M, Song M X, Xie X Y, Wen Y, Wang Z R, Wei B, Wang Z W. CQDs/biochar from reed straw modified Z-scheme MgIn2S4/BiOCl with enhanced visible-light photocatalytic performance for carbamazepine degradation in water[J]. Chemosphere, 2021,287(2)132192.

    6. [6]

      XU Q S, SONG Y J, LIU J X, WANG X C, LI C Q, WANG H. Effect of Si to Al ratio of Cu/HZSM-5 catalyst on the catalytic decomposition of N2O[J]. Chinese Journal of Environmental Engineering, 2020,14(6):1579-1591.  

    7. [7]

      García-Montaño J, Domènech X, García-Hortal J A, Torrades F, Peral J. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal[J]. J. Hazard Mater., 2008,154(3):484-490.

    8. [8]

      Wang J, Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chem. Eng. J., 2020,401126158. doi: 10.1016/j.cej.2020.126158

    9. [9]

      Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: A review[J]. Sep. Purif. Technol., 2019,222:230-253. doi: 10.1016/j.seppur.2019.03.103

    10. [10]

      Sanghamitra P, Mazumder D, Mukherjee S. J. Treatment of wastewater containing oil and grease by biological method—A review. J. Environ. Sci. Health Part A-Toxic/Hazard[J]. Subst. Environ. Eng., 2021,56(4):394-412. doi: 10.1080/10934529.2021.1884468

    11. [11]

      LIANG M J, DENG N, XIANG X Y, MEI Y, YANG Z Y, YANG Y, YANG S J. Bi/BiVO4 & Bi4V2O11 Composite catalysts: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(2):263-270.  

    12. [12]

      Wang Q, Gao Q, Al-Enizi A M, Nafady A, Ma S. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light[J]. Inorg. Chem. Front., 2020,7(2):300-339. doi: 10.1039/C9QI01120J

    13. [13]

      ZOU C T, ZHANG Z, LIAO W J, YANG S J. Enhancement of photocatalytic performance of layered Bi2MoO6 by ferroelectric polarization[J]. Chinese J. Inorg. Chem., 2020,36(9):1717-1727.  

    14. [14]

      Byrne C, Subramanian G, Pillai C S. Recent advances in photocatalysis for environmental applications[J]. J. Environ. Chem. Eng., 2018,6(3):3531-3555. doi: 10.1016/j.jece.2017.07.080

    15. [15]

      ZHANG Z, ZOU C T, YANG Z Y, YANG S J. One-step preparation and photocatalytic activity of Bi2MoO6/CoMoO4 embroidery ball structure[J]. Chinese J. Inorg. Chem., 2020,36(8):1446-1456.  

    16. [16]

      Liu C, Ren Y H, Wang Z W, Shi Y Z, Guo B B, Yu Y, Wu L. Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis[J]. J. Colloid Interface Sci., 2022,607(1):423-430.

    17. [17]

      Liu M Y, Zhu H Q, Zhu N L, Yu Q L. Vacancy engineering of BiOCl microspheres for efficient removal of multidrug-resistant bacteria and antibiotic-resistant genes in wastewater[J]. Chem. Eng. J., 2021,426130710. doi: 10.1016/j.cej.2021.130710

    18. [18]

      Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H. Valence band engineering of layered bismuth oxyhalides toward stable visible-light water splitting: Madelung site potential analysis[J]. J. Am. Chem. Soc., 2017,139(51):18725-18731. doi: 10.1021/jacs.7b11497

    19. [19]

      Liang Y, Zhou X H, Li W, Peng H L. Preparation of two-dimensional [Bi2O2]- based layered materials: Progress and prospects[J]. APL Mater., 2021,9(6)060905. doi: 10.1063/5.0052300

    20. [20]

      Xiong D Z, Zhao W, Guo J J, Li S B, Ye Y, E L, Yang X F. Highly efficient and reusable BiOCl photocatalyst modulating by hydrogel immobilization and oxygen vacancies engineering[J]. Sep. Purif. Technol., 2021,277119628. doi: 10.1016/j.seppur.2021.119628

    21. [21]

      Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation[J]. Appl. Catal. B-Environ., 2019,256117872. doi: 10.1016/j.apcatb.2019.117872

    22. [22]

      YANG B Y, LI H, SHANG N Z, FENG C, GAO S T, WANG C. Visible-light responsive photocatalyst g-C3N4@BiOCl with hollow flower-like structure: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2017,33(3):396-404.  

    23. [23]

      Nafradi M, Hernadi K, Konya Z, Alapi T. Investigation of the efficiency of BiOI/BiOCl composite photocatalysts using UV, cool and warm white LED light sources—Photon efficiency, toxicity, reusability, matrix effect, and energy consumption[J]. Chemosphere, 2021,280130636. doi: 10.1016/j.chemosphere.2021.130636

    24. [24]

      Long Z Q, Wang H L, Huang K W, Zhang G M, Xie H J. Di-functional Cu2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth[J]. J. Hazard. Mater., 2021,424127554.

    25. [25]

      Liu M Y, Lin G L, Liu Y M, Lin X Y, Wang L J, Xu Y F, Song X C. Ternary heterojunction Ag/AgIO3/BiOCl(CMC) by a biomass template for photodegradation of tetracycline hydrochloride and gaseous formaldehyde[J]. Solid State Sci., 2021,112106517. doi: 10.1016/j.solidstatesciences.2020.106517

    26. [26]

      Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism[J]. J. Hazard. Mater., 2020,385121552. doi: 10.1016/j.jhazmat.2019.121552

    27. [27]

      Jiang D N, Chen M, Wang H, Zeng G M, Huang D L, Cheng M, Liu Y, Xue W J, Wang Z W. The application of different typological and structural MOFs-based materials for the dyes adsorption[J]. Coord. Chem. Rev., 2018,380:471-483.

    28. [28]

      NIU B T, XIA W N, LAI Z Q, GUO H X, CHEN Z X. Metal organic skeleton Ni-BTC and Ni-BDC solvent effect morphology control and supercapacitor performance[J]. Chinese J. Inorg. Chem., 2022,38(8):1643-1654.  

    29. [29]

      Safaei M, Foroughi M M, Ebrahimpoor N, Jahani S, Omidi A, Khatamia M. A review on metal-organic frameworks: Synthesis and applications[J]. Trac-Trends Anal. Chem., 2019,118:401-425. doi: 10.1016/j.trac.2019.06.007

    30. [30]

      Voorde B, Bueken B, Denayer J, Vos D. Adsorptive separation on metal-organic frameworks in the liquid phase[J]. Chem. Soc. Rev., 2014,43:5766-5788. doi: 10.1039/C4CS00006D

    31. [31]

      Arora C, Soni S, Sahu S, Mittal J, Kumar P, Bajpaid P. Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste[J]. J. Mol. Liq., 2019,284:343-352. doi: 10.1016/j.molliq.2019.04.012

    32. [32]

      Shanahan J, Kissel D S, Sullivan E. PANI@UiO-66 and PANI@UiO-66-NH2 polymer-MOF hybrid composites as tunable semiconducting materials[J]. ACS Omega, 2020,5(12):6395-6404. doi: 10.1021/acsomega.9b03834

    33. [33]

      Rodríguez N A, Parra R, Grela M A. Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: Implications on their excitation mechanism[J]. RSC Adv., 2015,5(89):73112-73118. doi: 10.1039/C5RA11182J

    34. [34]

      Pattappan D, Kavya K V, Vargheese S, Rajendra Kumar R T, Haldorai Y. Graphitic carbon nitride/NH2-MIL-101(Fe) composite for environmental remediation: Visible-light-assisted photocatalytic degradation of acetaminophen and reduction of hexavalent chromium[J]. Chemosphere, 2022,286(3)131875.

    35. [35]

      Alvaro M, Carbonell E, Ferrer B, Llabrés F X, Xamena I, Garcia H. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chem. Eur. J., 2007,13(18):5106-5112. doi: 10.1002/chem.200601003

    36. [36]

      HU H. Construction of zirconium-based metal-organic framework composites and study on adsorption and degradation of ciprofloxacin. Huangshi: Hubei Normal University. 2022: 1-70

    37. [37]

      Ding J, Yang Z Q, He C, Tong X W, Li Y, Niu X J, Zhang H G. UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation[J]. J. Colloid Interface Sci., 2017,497:126-133. doi: 10.1016/j.jcis.2017.02.060

    38. [38]

      Sun J Y, Li D Y, Li Y R, Cai Y J, Sun L, Yuan X J, Cao G, Xu H M, Xia D S. CMC/BiOCl 3D hierarchical nanostructures with exposed {001} facets and its enhanced photocatalytic activity[J]. ChemistrySelect, 2018,3(16):4463-4470. doi: 10.1002/slct.201703167

    39. [39]

      Chen X Y, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Modified-MOF-808-loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal[J]. ACS Appl. Mater. Interfaces, 2020,12(35):39227-39235. doi: 10.1021/acsami.0c10290

    40. [40]

      Dai S, Simms C, Dovgaliuk I, Patriarche G, Tissot A, Parac-Vogt T N, Serre C. Monodispersed MOF-808 nanocrystals synthesized via a scalable room-temperature approach for efficient heterogeneous peptide bond hydrolysis[J]. Chem. Mater., 2021,33(17):7057-7066. doi: 10.1021/acs.chemmater.1c02174

    41. [41]

      Yu Z M, Lv Y K, Zhang F, Shi Q, An K, Huang F, Fan T T, Li G, Wang J. Catalytic degradation of organic pollutants in water under visible light by BiOCl@NH2-MIL-125(Ti-Zr) composite photocatalyst[J]. J. Mater. Sci.-Mater. Electron., 2021,33:19599-19611.

    42. [42]

      Xu J, Liu J, Li Z, Wang X B, Wang Z. Synthesis, structure and properties of Pd@ MOF-808[J]. J. Mater. Sci., 2019,54(19):12911-12924. doi: 10.1007/s10853-019-03786-0

    43. [43]

      Qin H L, Zhang Y S, He S J, Guan Z Y, Shi Y T, Xie X Y, Xia D S, Li D Y, Xu H M. Increasing the migration and separation efficiencies of photogenerated carriers in CQDs/BiOCl through the point discharge effect[J]. Appl. Surf. Sci., 2021,562150214. doi: 10.1016/j.apsusc.2021.150214

    44. [44]

      Hou J H, Tu X Y, Wu X G, Shen M, Wang X Z, Wang C Y, Cao C B, Peng H, Wang G X. Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host[J]. Chem. Eng. J., 2020,401126141. doi: 10.1016/j.cej.2020.126141

    45. [45]

      Kong L C, Wang Y, Andrews C B, Zheng C M. One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water[J]. Chem. Eng. J., 2022,435(1)134830.

    46. [46]

      Tong X W, Yang Z Q, Feng J N, Li Y, Zhang H G. BiOCl/UiO-66 composite with enhanced performance for photo-assisted degradation of dye from water[J]. Appl. Organometal. Chem., 2017,32(2)e4049.

    47. [47]

      Xu C, Wang J, Gao B R, Dou M M, Chen R. Synergistic adsorption and visible-light catalytic degradation of RhB from recyclable 3D mesoporous graphitic carbon nitride/reduced graphene oxide aerogels[J]. J. Mater. Sci., 2019,54(12):8892-8906. doi: 10.1007/s10853-019-03531-7

    48. [48]

      Tang X L, Liu H H, Yang C, Jin X Y, Zhong J B, Li J Z. In-situ fabrication of Z-scheme CdS/BiOCl heterojunctions with largely improved photocatalytic performance[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2020,599124880. doi: 10.1016/j.colsurfa.2020.124880

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(19)
  • Abstract views(2605)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return