Citation: Li-Hua HU, Xiao WANG, Kai-Ran HU, Chen CHEN, Zhi-Hao XU, Wei XU. Direct synthesis of dimethyl carbonate from CO2 and methanol over ZIF-67/CeO2[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(7): 1315-1324. doi: 10.11862/CJIC.2023.091 shu

Direct synthesis of dimethyl carbonate from CO2 and methanol over ZIF-67/CeO2

Figures(7)

  • An efficient heterogeneous catalyst ZIF-67/CeO2 composites were synthesized by a precipitation method, and developed for the direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol. The physicochemical properties of the ZIF-67/CeO2 catalysts were investigated by X-ray diffraction, N2 adsorption - desorption, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results demonstrated that the introduction of ZIF-67 causes more oxygen vacancies to be generated onto CeO2. Among the ZIF-67/CeO2 catalysts, 0.3-ZIF-67/CeO2 (0.3 was the molar ratio of Co and Ce) showed the best catalytic performance due to its high specific surface area, mesoporous structure, and high CO2 adsorption capacity. Yield of 3.79 mmolDMC·gcat-1 was achieved at a temperature of 140 ℃ and a pressure of 4.5 MPa for 4 h.
  • 加载中
    1. [1]

      Zhang M, Xu Y H, Williams B L, Xiao M, Wang S J, Han D M, Sun L Y, Meng Y Z. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2[J]. J. Cleaner Prod., 2021,279123344. doi: 10.1016/j.jclepro.2020.123344

    2. [2]

      Kumar P, Srivastava V C, Štangar U L, Mušič B, Mishra I M, Meng Y. Recent progress in dimethyl carbonate synthesis using different feedstock and techniques in the presence of heterogeneous catalysts[J]. Catal. Rev., 2019,63(3):363-421.

    3. [3]

      ZHANG J Y. Study on synthesis of dimethyl carbonate from carbon dioxide and methanol over cerium based catalysts. Tianjin: Tianjin University, 2020: 1-3

    4. [4]

      Esan A O, Adeyemi A D, Ganesan S. A review on the recent application of dimethyl carbonate in sustainable biodiesel production[J]. J. Cleaner Prod., 2020,257120561. doi: 10.1016/j.jclepro.2020.120561

    5. [5]

      Medrano-García J D, Javaloyes-Antón J, Vázquez D, Ruiz-Femenia R, Caballero J A. Alternative carbon dioxide utilization in dimethyl carbonate synthesis and comparison with current technologies[J]. J. CO2 Util., 2021,45101436. doi: 10.1016/j.jcou.2021.101436

    6. [6]

      Tamboli A H, Chaugule A A, Kim H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chem. Eng. J., 2017,323:530-544. doi: 10.1016/j.cej.2017.04.112

    7. [7]

      Li H G, Zhang G Q, Wang Y, Zhang S J. Transesterification of ethylene carbonate with methanol over Zn-La mixed oxide catalysts[J]. J. Fuel Chem. Technol., 2018,46(8):977-984. doi: 10.1016/S1872-5813(18)30041-0

    8. [8]

      Lee K M, Jang J H, Balamurugan M, Kim J E, Jo Y I, Nam K T. Redoxneutral electrochemical conversion of CO2 to dimethyl carbonate[J]. Nat. Energy, 2021,6(7):733-741. doi: 10.1038/s41560-021-00862-1

    9. [9]

      Kabra S K, Turpeinen E, Keiski R L, Yadav G D. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide: A thermodynamic and experimental study[J]. J. Supercrit. Fluids, 2016,117:98-107. doi: 10.1016/j.supflu.2016.05.039

    10. [10]

      Marin C M, Li L, Bhalkikar A, Doyle J E, Zeng X C, Cheung C L. Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts[J]. J. Catal., 2016,340:295-301. doi: 10.1016/j.jcat.2016.06.003

    11. [11]

      Shi D C, Heyte S, Capron M, Paul S. Catalytic processes for the direct synthesis of dimethyl carbonate from CO2 and methanol: A review[J]. Green Chem., 2022,24(3):1067-1089. doi: 10.1039/D1GC04093F

    12. [12]

      Zhao T X, Hu X B, Wu D S, Li R, Yang G Q, Wu Y T. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant[J]. ChemSusChem, 2017,10(9):2046-2052. doi: 10.1002/cssc.201700128

    13. [13]

      Lu B, Wang X, Li Y, Sun J, Zhao J X, Cai Q H. Electrochemical conversion of CO2 into dimethyl carbonate in a functionalized ionic liquid[J]. J. CO2 Util., 2013,3-4:98-101. doi: 10.1016/j.jcou.2013.10.001

    14. [14]

      Sun J, Lu B, Wang X, Li X, Zhao J X, Cai Q H. A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2[J]. Fuel Process. Technol., 2013,115:233-237. doi: 10.1016/j.fuproc.2013.06.009

    15. [15]

      Choi J C, He L N, Yasuda H, Sakakura T. Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol[J]. Green Chem., 2002,4(3):230-234. doi: 10.1039/b200623p

    16. [16]

      Truong C C, Mishra D K. Recent advances in the catalytic fixation of carbon dioxide to value - added chemicals over alkali metal salts[J]. J. CO2 Util., 2020,41101252. doi: 10.1016/j.jcou.2020.101252

    17. [17]

      Akune T, Morita Y, Shirakawa S, Katagiri K, Inumaru K. ZrO2 nanocrystals as catalyst for synthesis of dimethyl carbonate from methanol and carbon dioxide: Catalytic activity and elucidation of active sites[J]. Langmuir, 2018,34(1):23-29. doi: 10.1021/acs.langmuir.7b01294

    18. [18]

      Xu S Y, Cao Y X, Liu Z M. Dimethyl carbonate synthesis from CO2 and methanol over CeO2 -ZrO2 catalyst[J]. Catal. Commun., 2022,162106397. doi: 10.1016/j.catcom.2022.106397

    19. [19]

      WANG X H, ZHAO J X, PEI Y L, REN J. Research progress in dimethyl carbonate synthesis from carbon dioxide and methanol catalyzed by metal oxides[J]. Chemical Industry and Engineering Progress, 2019,38(11):4956-4964.  

    20. [20]

      Aouissi A, Al-Othman Z A, Al-Amro A. Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co1.5PW12O40 Keggin-type heteropolyanion[J]. Int. J. Mol. Sci., 2010,11(4):1343-1351. doi: 10.3390/ijms11041343

    21. [21]

      Xuan K, Pu Y F, Li F, Li A X, Luo J, Li L, Wang F, Zhao N, Xiao F K. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66[J]. J. CO2 Util., 2018,27:272-282. doi: 10.1016/j.jcou.2018.08.002

    22. [22]

      Xuan K, Pu Y F, Li F, Luo J, Zhao N, Xiao F K. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chin. J. Catal., 2019,40(4):553-566. doi: 10.1016/S1872-2067(19)63291-2

    23. [23]

      Xuan K, Chen S K, Pu Y F, Guo Y P, Guo Y D, Li Y, Pu C X, Zhao N, Xiao F K. Encapsulating phosphotungstic acid within metalorganic framework for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. J. CO2 Util., 2022,59101960. doi: 10.1016/j.jcou.2022.101960

    24. [24]

      Chen Y D, Yang Y, Tian S L, Ye Z B, Tang Q, Ye L, Li G. Highly effective synthesis of dimethyl carbonate over CuNi alloy nanoparticles@porous organic polymers composite[J]. Appl. Catal. A-Gen., 2019,587117275. doi: 10.1016/j.apcata.2019.117275

    25. [25]

      Prymak I, Prymak O, Wang J, Kalevaru V N, Martin A, Bentrup U, Wohlrab S. Phosphate functionalization of CeO2-ZrO2 solid solutions for the catalytic formation of dimethyl carbonate from methanol and carbon dioxide[J]. ChemCatChem, 2018,10(2):391-394. doi: 10.1002/cctc.201701105

    26. [26]

      Faria D J, dos Santos L M, Bernard F L, Pinto I S, Romero I P, Chaban V V, Einloft S. Performance of supported metal catalysts in the dimethyl carbonate production by direct synthesis using CO2 and methanol[J]. J. CO2 Util., 2021,53101721. doi: 10.1016/j.jcou.2021.101721

    27. [27]

      Chang K, Zhang H C, Cheng M J, Lu Q. Application of ceria in CO2 conversion catalysis[J]. ACS Catal., 2019,10(1):613-631.

    28. [28]

      Jiang J, Marin C M, Both A K, Cheung C L, Li L, Zeng X C. Formation of dimethyl carbonate via direct esterification of CO2 with methanol on reduced or stoichiometric CeO2(111) and (110) surfaces[J]. Phys. Chem. Chem. Phys., 2021,23(30):16150-16156. doi: 10.1039/D1CP02152D

    29. [29]

      Zhang J Y, Huang S Y, Zhao Y J, Ma X N, Wang S P. CeO2 hollow nanosphere for catalytic synthesis of dimethyl carbonate from CO2 and methanol: The effect of cavity effect on catalytic performance[J]. Asia-Pac. J. Chem. Eng., 2020,16(1)e2554.

    30. [30]

      Tamboli A H, Chaugule A A, Gosavi S W, Kim H. CeZr1-xO2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: Reaction mechanism and the effect of catalyst morphology on catalytic activity[J]. Fuel, 2018,216:245-254. doi: 10.1016/j.fuel.2017.12.008

    31. [31]

      Wang S P, Zhao L F, Wang W, Zhao Y J, Zhang G L, Ma X B, Gong J L. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol[J]. Nanoscale, 2013,5(12):5582-5588. doi: 10.1039/c3nr00831b

    32. [32]

      Fu Z W, Zhong Y Y, Yu Y H, Long L Z, Xiao M, Han D M, Wang S J, Meng Y Z. TiO2-doped CeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: Catalytic performance and kinetic study[J]. ACS Omega, 2018,3(1):198-207. doi: 10.1021/acsomega.7b01475

    33. [33]

      Liu B, Li C M, Zhang G Q, Yao X S, Chuang S S C, Li Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods[J]. ACS Catal., 2018,8(11):10446-10456. doi: 10.1021/acscatal.8b00415

    34. [34]

      Liu B, Li C M, Zhang G Q, Yan L F, Li Z. Direct synthesis of dimethyl carbonate from CO2 and methanol over CaO-CeO2 catalysts: The role of acid - base properties and surface oxygen vacancies[J]. New J. Chem., 2017,41(20):12231-12240. doi: 10.1039/C7NJ02606D

    35. [35]

      YAN Y Y, LI Y, DENG J, ZHAO X, TA N, CHEN Y D. Direct synthesis of dimethyl carbonate from CO2 and methanol by Mg - doped ceria monolithic catalyst[J]. Chinese J. Inorg. Chem., 2022,38(7):1402-1410.  

    36. [36]

      SUN Y C. Study on the reaction and mechanism of CO2 synthesis of dimethyl carbonate with lattice oxygen and oxygen vacancies on the surface of cerium ⁃ based catalyst. Taiyuan: Taiyuan University of Technology, 2020: 54-65

    37. [37]

      ZHANG G Q, SUN Y C, SHI Y B, ZHENG H Y, LI Z, SHANGGUAN J, LIU S J, SHI P Z. Surface properties of Ce1-x MnxO2 catalyst on the catalytic activities for direct synthesis of DMC from CO2 and methanol[J]. Chem. J. Chinese Universities, 2020,41(9):2061-2069.  

    38. [38]

      Marciniak A A, Alves O C, Appel L G, Mota C J A. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent[J]. J. Catal., 2019,371:88-95. doi: 10.1016/j.jcat.2019.01.035

    39. [39]

      Kuan W F, Yu W Y, Tu F Y, Chung C H, Chang Y C, Lin M M, Yu T H, Chen L J. Facile reflux preparation of defective mesoporous ceria nanorod with superior catalytic activity for direct carbon dioxide conversion into dimethyl carbonate[J]. Chem. Eng. J., 2022,430132941. doi: 10.1016/j.cej.2021.132941

    40. [40]

      Cravillon J, Munzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Rapid room - temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chem. Mater., 2009,21(8):1410-1412. doi: 10.1021/cm900166h

    41. [41]

      SHI Y B, ZHANG G Q, SUN Y C, ZHENG H Y, LI Z, SHANGGUAN J, MI J, LIU S J, SHI P Z. KIT-6 supported CeO2 for catalytic synthesis of dimethyl carbonate from CO2 and methanol[J]. Chinese J. Inorg. Chem., 2021,37(6):1004-1016.  

    42. [42]

      Zhu M Q, Venna S R, Jasinski J B, Carreon M A. Room-temperature synthesis of ZIF-8: The coexistence of ZnO nanoneedles[J]. Chem. Mater., 2011,23(16):3590-3592. doi: 10.1021/cm201701f

    43. [43]

      Hu Y, Kazemian H, Rohani S, Huang Y H, Song Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy[J]. Chem. Commun., 2011,47(47):12694-12696. doi: 10.1039/c1cc15525c

    44. [44]

      Tuan D D, Lin K Y A. Ruthenium supported on ZIF - 67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride[J]. Chem. Eng. J., 2018,351:48-55. doi: 10.1016/j.cej.2018.06.082

    45. [45]

      Zhao S Z, Kang D J, Liu Y P, Wen Y F, Xie X Z, Yi H H, Tang X L. Spontaneous formation of asymmetric oxygen vacancies in transitionmetal-doped CeO2 nanorods with improved activity for carbonyl sulfide hydrolysis[J]. ACS Catal., 2020,10(20):11739-11750. doi: 10.1021/acscatal.0c02832

    46. [46]

      Hahn K R, Iannuzzi M, Seitsonen A P, Hutter J. Coverage effect of the CO2 adsorption mechanisms on CeO2(111) by first principles analysis[J]. J. Phys. Chem. C, 2013,117(4):1701-1711. doi: 10.1021/jp309565u

    47. [47]

      Zhao S Y, Wang S P, Zhao Y J, Ma X B. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2[J]. Chin. Chem. Lett., 2017,28(1):65-69. doi: 10.1016/j.cclet.2016.06.003

    48. [48]

      Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud A A, Bats N. Catalysis of transesterification by a nonfunctionalized metal - organic framework: Acido - basicity at the external surface of ZIF - 8 probed by FTIR and ab initio calculations[J]. J. Am. Chem. Soc., 2010,132:2365-12377.

    49. [49]

      Liu H, Zou W J, Xu X L, Zhang X L, Yang Y Q, Yue H J, Yu Y, Tian G, Feng S H. The proportion of Ce4+ in surface of CexZr1-x O2 catalysts: The key parameter for direct carboxylation of methanol to dimethyl carbonate[J]. J. CO2 Util., 2017,17:43-49. doi: 10.1016/j.jcou.2016.11.006

    50. [50]

      Zheng Q X, Nishimura R, Sato Y, Inomata H, Ota M, Watanabe M, Camy S. Dimethyl carbonate (DMC) synthesis from methanol and carbon dioxide in the presence of ZrO2 solid solutions and yield improvement by applying a natural convection circulation system[J]. Chem. Eng. J., 2022,429132378. doi: 10.1016/j.cej.2021.132378

    51. [51]

      Cai Q H, Lu B, Guo L J, Shan Y K. Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Catal. Commun., 2009,10(5):605-609. doi: 10.1016/j.catcom.2008.11.002

    52. [52]

      Stoian D, Medina F, Urakawa A. Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine[J]. ACS Catal., 2018,8(4):3181-3193. doi: 10.1021/acscatal.7b04198

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(13)
  • Abstract views(2449)
  • HTML views(409)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return