Citation: Zheng CHEN, Ni-Ni ZHAI, Su-Hua GAO, Ming-Ji LI, Hong-Ji LI. Preparation of boron-nitrogen co-doped vertical graphene electrode for glucose detection[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 785-793. doi: 10.11862/CJIC.2023.062 shu

Preparation of boron-nitrogen co-doped vertical graphene electrode for glucose detection

Figures(7)

  • In this work, vertical graphene (VG) and boron-doped vertical graphene (BVG), nitrogen-doped vertical graphene (NVG), and B-N co-doped vertical graphene (BNVG) films were prepared by electron-assisted hot-filament chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to characterize the morphology, microstructure, and composition, and the electrochemical performance of the skin-sensing electrode was analyzed by electrochemical methods. The results show that the BNVG film has a three-dimensional porous network structure, which is formed by interlacing many vertically grown graphene nanosheets. The content of B and N atoms (atomic fraction) in these nanosheets reached 3.78% and 2.75%, respectively. Furthermore, the skin-contact resistance of the BNVG film electrode was only 4.5 kΩ, which was lower than that of the VG electrode. The BNVG film electrode-based sensor had a wide linear range of 0.001 to 10 000 μmol·L-1, and the detection limit was as low as 0.03 μmol·L-1 (S/N=3). Moreover, the developed sensing electrode showed excellent anti-interference ability and long-term stability (45 d).
  • 加载中
    1. [1]

      Zhao J Q, Lin Y J, Wu J B, Nyein H Y Y, Bariya M, Tai L C, Chao M H, Ji W B, Zhang G, Fan Z Y, Javey A. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring[J]. ACS Sens., 2019,4(7):1925-1933. doi: 10.1021/acssensors.9b00891

    2. [2]

      Guan H Y, Zhong T Y, He H X, Zhao T M, Xing L L, Zhang Y, Xue X Y. A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data[J]. Nano Energy, 2019,59:754-761. doi: 10.1016/j.nanoen.2019.03.026

    3. [3]

      Lee H B, Meeseepong M, Trung T Q, Kim B Y, Lee N E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat[J]. Biosens. Bioelectron., 2020,156112133. doi: 10.1016/j.bios.2020.112133

    4. [4]

      QIN Y C, XU J Y, KANG M X, ZHAO C, LIU H. Nonenzymatic detection of glucose in sweat based on electrodeposited microelectrodes[J]. Chin. J. Anal. Chem., 2022,50(11):1750-1755.  

    5. [5]

      Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes[J]. Diabetes Technol. Ther., 2012,14:398-402. doi: 10.1089/dia.2011.0262

    6. [6]

      Han J Y, Li M J, Li H J, Li C P, Ye J S, Yang B H. Pt-poly(L-lactic acid) microelectrode-based microsensor for in situ glucose detection in sweat[J]. Biosens. Bioelectron., 2020,170112675. doi: 10.1016/j.bios.2020.112675

    7. [7]

      Xu Y Y, Deng P L, Chen G D, Chen J X, Yan Y, Qi K, Liu H F, Xia B Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries[J]. Adv. Funct. Mater., 2020,30(6)1906081. doi: 10.1002/adfm.201906081

    8. [8]

      Janyasupab M, Liu C W, Chanlek N, Chio-Srichan S, Promptmas C, Surareungchai W. A comparative study of non-enzymatic glucose detection in artificial human urine and human urine specimens by using mesoporous bimetallic cobalt-iron supported N-doped graphene biosensor based on differential pulse voltammetry[J]. Sens. Actuators B: Chem., 2019,286:550-563. doi: 10.1016/j.snb.2019.02.018

    9. [9]

      Yan W K, Li M J, Li H J, Li C P, Xu S, Su L, Qian L R, Yang B H. Aqueous lithium and sodium ion capacitors with boron-doped graphene/BDD/TiO2 anode and boron-doped graphene/BDD cathode exhibiting AC line-filtering performance[J]. Chem. Eng. J., 2020,388124265. doi: 10.1016/j.cej.2020.124265

    10. [10]

      LI J J, LI H, JIA L P, MA R N, JIA W L, WANG H S. Construction of nonenzymatic glucose sensor based on one step preparation of poly(3, 4-ethylenedioxythiophene) graphene composite materials by pulse potentiostatic method[J]. Chin. J. Anal. Chem., 2017,45(12):2004-2010. doi: 10.11895/j.issn.0253-3820.171306

    11. [11]

      LI J, YANG X Y. Applications of novel carbon nanomaterials—Graphene and its derivatives in biosensing[J]. Prog. Chem., 2013,25(Zl):380-396.  

    12. [12]

      Gu S Y, Hsieh C T, Kao C P, Fu C C, Gandomi Y A, Juang R S, Kihm K D. Electrocatalytic oxidation of glucose on boron and nitrogen codoped graphene quantum dot electrodes in alkali media[J]. Catalysts, 2021,11(1)101. doi: 10.3390/catal11010101

    13. [13]

      Zhang F, Li M J, Li H J, Wang G L, Long Y B, Li P H, Li C P, Yang B H. Fabrication of self-supporting nitrogen-doped graphene microelectrodes for in situ analysis of salicylic acid in plants[J]. Carbon, 2021,175:364-376. doi: 10.1016/j.carbon.2021.01.110

    14. [14]

      Wang Z, Xue L F, Li M J, Li C P, Li P H, Li H J. Au@SnO2-vertical graphene-based microneedle sensor for in-situ determination of abscisic acid in plants[J]. Mater. Sci. Eng. C, 2021,127112237. doi: 10.1016/j.msec.2021.112237

    15. [15]

      Berrellez-Reyes F, Soto-Puebla D, Alvarez-Garcia S. A comprehensive multiparametric Raman analysis of graphene evolution under prolonged near-IR femtosecond laser irradiation[J]. Appl. Surf. Sci., 2021,569151092. doi: 10.1016/j.apsusc.2021.151092

    16. [16]

      Azam M A, Aziz M F A, Zulkapli N N, Omar G, Munawar R F, Suan M S M, Safie N E. Direct observation of graphene during Raman analysis and the effect of precursor solution parameter on the graphene structures[J]. Diam. Relat. Mater., 2020,104107767. doi: 10.1016/j.diamond.2020.107767

    17. [17]

      Lin L P, Rong M C, Lu S S, Song X H, Zhong Y X, Yan J W, Wang Y R, Chen X. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015,7(5):1872-1878. doi: 10.1039/C4NR06365A

    18. [18]

      Chen W, Xu L, Tian Y H, Li H A, Wang K. Boron and nitrogen co-doped graphene aerogels: Facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis[J]. Carbon, 2018,137:458-466. doi: 10.1016/j.carbon.2018.05.061

    19. [19]

      Li H J, Qin J Q, Li M J, Li C P, Xu S, Qian L R, Yang B H. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor[J]. Sens. Actuators B: Chem., 2020,302127209. doi: 10.1016/j.snb.2019.127209

    20. [20]

      Rahsepar M, Foroughi F, Kim H. A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value[J]. Sens. Actuators B: Chem., 2019,282:322-330. doi: 10.1016/j.snb.2018.11.078

    21. [21]

      WANG T Y, HAN N, JIA D D, LI H Q, HE X J. Preparation and supercapacitive properties of B, N co-doped porous carbons[J]. Chinese J. Inorg. Chem., 2023,39(2):309-316.  

    22. [22]

      Dang W, Manjakkal L, Navaraj W T, Lorenzelli L, Vinciguerra V, Dahiya R. Stretchable wireless system for sweat pH monitoring[J]. Biosens. Bioelectron., 2018,107:192-202. doi: 10.1016/j.bios.2018.02.025

    23. [23]

      Singh A, Hazarika A, Dutta L, Bhuyan A, Bhuyan M. A fully handwritten-on-paper copper nanoparticle ink-based electroanalytical sweat glucose biosensor fabricated using dual-step pencil and pen approach[J]. Anal. Chim. Acta, 2022,1227340257. doi: 10.1016/j.aca.2022.340257

    24. [24]

      Xiao L L, Yang K X, Duan J X, Zheng S Y, Jiang J. The nickel phosphate rods derived from Ni-MOF with enhanced electrochemical activity for non-enzymatic glucose sensing[J]. Talanta, 2022,247123587. doi: 10.1016/j.talanta.2022.123587

    25. [25]

      Wang H T, Zhu W X, Xu T, Zhang Y X, Tian Y J, Liu X, Wang J L, Ma M. An integrated nanoflower-like MoS2@CuCo2O4 heterostructure for boosting electrochemical glucose sensing in beverage[J]. Food Chem., 2022,396133630. doi: 10.1016/j.foodchem.2022.133630

    26. [26]

      Liu W B, Zhao X M, Dai Y X, Qi Y. Study on the oriented self-assembly of cuprous oxide micro-nano cubes and its application as a non-enzymatic glucose sensor[J]. Colloids Surf. B, 2022,211112317. doi: 10.1016/j.colsurfb.2021.112317

    27. [27]

      Liu W B, Zhao X M, Dai Y X, Qi Y. Preparation of three dimensional Cu2O/Au/GO hybrid electrodes and its application as a non-enzymatic glucose sensor[J]. Microchem. J., 2022,179107451. doi: 10.1016/j.microc.2022.107451

    28. [28]

      Shu H, Peng S J, Lai T R, Cui X X, Ren J, Chen T, Xiao X C, Wang Y D. Nickel foam electrode decorated with Fe-CdIn2O4 nanoparticles as an effective electrochemical sensor for non-enzymatic glucose detection[J]. J. Electroanal. Chem., 2022,919116524. doi: 10.1016/j.jelechem.2022.116524

    29. [29]

      Zhu Q Z, Hu S Y, Zhang L Q, Li Y, Carraro C, Maboudian R, Wei W, Liu A R, Zhang Y J, Liu S Q. Reconstructing hydrophobic ZIF-8 crystal into hydrophilic hierarchically-porous nanoflowers as catalyst carrier for nonenzymatic glucose sensing[J]. Sens. Actuators B: Chem., 2020,313128031. doi: 10.1016/j.snb.2020.128031

    30. [30]

      LÜ X Y, LIU J G, ZHU Y Y. CoP Nanocage-based efficient non-enzymatic glucose electrochemical sensor[J]. Chinese J. Inorg. Chem., 2020,36(9):1675-1682.  

    31. [31]

      ZOU L, WANG S S, QIU J. Preparation and properties of a glucose biosensor electrode based on an ionic liquid-functionalized graphene/carbon nanotube composite[J]. New Carbon Mater., 2020,35(1):12-19.  

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

Metrics
  • PDF Downloads(3)
  • Abstract views(1200)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return