Citation: Min WANG, Meng-Yao YANG, Si-Yu CHEN, Ying-Qiu PU. Application of bilayer-structured CeO2 photoande in dye-sensitized solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 883-890. doi: 10.11862/CJIC.2023.057 shu

Application of bilayer-structured CeO2 photoande in dye-sensitized solar cells

  • Corresponding author: Min WANG, 060130@yzu.edu.cn
  • Received Date: 1 December 2022
    Revised Date: 7 April 2023

Figures(8)

  • Different composite photoanodes with double-layer structure applied to dye-sensitized solar cell (DSSC) can be prepared by core - shell structure Au@SiO2@CeO2 nanospheres synthesized by hydrothermal method. The results showed that the photoelectric conversion efficiency of the solar cells could be significantly improved when CeO2 nanospheres and Au@SiO2@CeO2 nanospheres coating were applied to the photoanode scattering layer of DSSC. Compared with the pure TiO2 (P25) photoanode, the photoelectric property of P25/CeO2 nanosphere photoanode cells increased by 15.3%, and that of P25/Au@SiO2@CeO2 nanosphere photoanode cells increased by 27.9%. Why the photoelectric property of DSSC can be enhanced is mainly attributed to the following two dimensions. On the one hand, the light scattering effect of the photoanode film is effectively heightened by the localized plasmon resonance of the Au nanoparticles. On the other hand, the light scattering effect and the electron transmission capacity are enhanced since the CeO2 has the high load capacity in the dye, the core-shell structure with a high specific surface area.
  • 加载中
    1. [1]

      Gratzel M. Recent advances in sensitized mesoscopic solar cells[J]. Acc. Chem. Res., 2009,42:1788-1798. doi: 10.1021/ar900141y

    2. [2]

      O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353(6346):737-739. doi: 10.1038/353737a0

    3. [3]

      Kay K, Gratzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins[J]. J. Phys. Chem., 1993,97(23):6272-6277. doi: 10.1021/j100125a029

    4. [4]

      Van de Lagemaat J, Park N G, Frank A J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques[J]. J. Phys. Chem. B, 2000,104(9):2044-2052. doi: 10.1021/jp993172v

    5. [5]

      Vesce L, Riccitelli R, Soscia G, Brown T M, Carlo A D, Reale A. Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment[J]. J. Non-Cryst. Solids, 2010,356(37/38/39/40):1958-1961.

    6. [6]

      Rustomj C S, Frandsen C J, Jin S, Tauber M J. Dye sensitized solar cell constructed with titanium mesh and 3D array of TiO2 nanotubes[J]. J. Phys. Chem. B, 2010,114(45):14537-14543. doi: 10.1021/jp102299g

    7. [7]

      Nazeeruddin M K, Humphry-Baker R, Liska P, Gratzel M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell[J]. J. Phys. Chem. B, 2003,107(34):8981-8987. doi: 10.1021/jp022656f

    8. [8]

      Kim M H, Kwon Y U. Semiconductor CdO as a blocking layer material on DSSC electrode: Mechanism and application[J]. J. Phys. Chem. C, 2009,113(39):17176-17182. doi: 10.1021/jp904206a

    9. [9]

      Wiley B J, Chen Y, McLellan J M, Xiong Y J, Li Z Y. Synthesis and optical properties of silver nanobars and nanorice[J]. Nano Lett., 2007,7(4):1032-1036. doi: 10.1021/nl070214f

    10. [10]

      Lee Y W, Kim M, Kim Z H, Han S W. One-step synthesis of Au@Pd core-shell nanooctahedron[J]. J. Am. Chem. Soc., 2009,131(47):17036-17037. doi: 10.1021/ja905603p

    11. [11]

      Zhang Q, Li W Y, Moran C, Zeng J, Chen J Y, Wen L P, Xia Y N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties[J]. J. Am. Chem. Soc., 2010,132(32):11372-11378. doi: 10.1021/ja104931h

    12. [12]

      Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Adv. Mater., 2004,16(19):1685-1706. doi: 10.1002/adma.200400271

    13. [13]

      Liu N G, Prall B S, Klimov V I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions[J]. J. Am. Chem. Soc., 2006,128(48):15362-15363. doi: 10.1021/ja0660296

    14. [14]

      Aslan K, Wu M, Lakowicz J R, Geddes C D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms[J]. J. Am. Chem. Soc., 2007,129(6):1524-1525. doi: 10.1021/ja0680820

    15. [15]

      Lu X H, Xie S L, Zhai T, Zhao Y F, Zhang P, Zhang Y L, Tong Y X. Monodisperse CeO2/CdS heterostructured spheres: One-pot synthesis and enhanced photocatalytic hydrogen activity[J]. RSC Adv., 2011,1(7):1207-1210. doi: 10.1039/c1ra00252j

    16. [16]

      Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Hierarchically mesostructured doped CeO2 with potential for solar cell use[J]. Nat. Mater., 2004,3(6):394-397. doi: 10.1038/nmat1129

    17. [17]

      Kadowaki H, Saito N, Nishiyama H, Inoue Y. RuO2-loaded Sr2+-doped CeO2 with d0 electronic configuration as a new photocatalyst for overall water splitting[J]. Chem. Lett., 2007,36(3):440-441. doi: 10.1246/cl.2007.440

    18. [18]

      Lu X H, Zheng D Z, Zhang P, Liang C L, Liu P. Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications[J]. Chem. Commun., 2010,46(41):7721-7723. doi: 10.1039/c0cc01854f

    19. [19]

      Lu X H, Zhai T, Cui H N, Xie S L, Huang Y Y, Liang C L, Tong Y X. Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods[J]. J. Mater. Chem., 2011,21(15):5569-5572. doi: 10.1039/c0jm04466k

    20. [20]

      Song S, Xu L J, He Z Q, Chen J M, Xiao X Z, Yan B. Mechanism of the photocatalytic degradation of C.l. reactive black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst[J]. Environ. Sci. Technol., 2007,41(16):5846-5853. doi: 10.1021/es070224i

    21. [21]

      Liyanage A D, Perera S D, Tan K, Chabal Y, Balkus Jr K J. Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods[J]. ACS Catal., 2014,4(2):577-584. doi: 10.1021/cs400889y

    22. [22]

      QU X F, LIU M H, ZHANG M Q, XIONG Q, DU F L. Effect of CeO2 doping on performance of dye sensitized solar cells based on TiO2 photoanodes[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2018,39(1):40-46.  

    23. [23]

      Li W, Xie S, Li M Y, Ouyang X W, Cui G F, Lu X H, Tong Y X. CdS/CeOx heterostructured nanowires for photocatalytic hydrogen production[J]. J. Mater. Chem. A, 2013,1(13):4190-4193. doi: 10.1039/c3ta10394c

    24. [24]

      Wang G M, Ling Y C, Lu X H, Wang H Y, Qian F, Tong Y X, Li Y. Solar driven hydrogen releasing from urea and human urine[J]. Energy Environ. Sci., 2012,5(8):8215-8219. doi: 10.1039/c2ee22087c

    25. [25]

      Warule S S, Chaudhari N S, Kale B B, Patil K R, Koinkar P M, More M A, Murakami R. Organization of cubic CeO2 nanoparticles on the edges of self assembled tapered ZnO nanorods via a template free one-pot synthesis: Significant cathodoluminescence and field emission properties[J]. J. Mater. Chem., 2012,22(18):8887-8895. doi: 10.1039/c2jm30226h

    26. [26]

      Chen H J, Shao L, Li Q, Wang J F. Gold nanorods and their plasmonic properties[J]. Chem. Soc. Rev., 2013,42(7):2679-2724. doi: 10.1039/C2CS35367A

    27. [27]

      Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS[J]. Nanoscale, 2013,5(12):5368-5374. doi: 10.1039/c3nr01170d

    28. [28]

      Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. J. Am. Chem. Soc., 2004,126(28):8648-8649. doi: 10.1021/ja047846d

    29. [29]

      LEI W, ZHU Y D, LUO S M D, WANG Z, LIU J X, LI M Y, BAI L H, LI M Y. Core-shell structure nano-Au@SiO2 improved performance of dye-sensitized solar cell[J]. Journal of Wuhan University (Natural Science Edition), 2017,63(4):330-336.  

    30. [30]

      Qi J F, Dang X N, Hammond P T, Belcher A M. Highly efficient plasmon enhanced dye sensitized solar cells through metal@oxide core shell nanostructure[J]. ACS Nano, 2011,5(9):7108-7116. doi: 10.1021/nn201808g

    31. [31]

      Luoshan M, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4: Yb3+, Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells[J]. J. Power Sources, 2016,307:468-473. doi: 10.1016/j.jpowsour.2016.01.028

    32. [32]

      Choi H B, Chen W T, Kamat P S. Kown thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye sensitized solar cells[J]. ACS Nano, 2012,6(5):4418-4427. doi: 10.1021/nn301137r

    33. [33]

      XIE H, HUANG C Y, LUO S M D, PEI L. Performance enhancement in dye-sensitized solar cells by Au nanoparticles[J]. Journal of Hubei University of Technology, 2019,34(5):37-41. doi: 10.3969/j.issn.1003-4684.2019.05.009

    34. [34]

      Wang Q, Moser J E, Gratzel M. Electrochemical impedance spectroscopic analysis of dye sensitized solar cells[J]. J. Phys. Chem. B, 2005,109(31):14945-14953. doi: 10.1021/jp052768h

    35. [35]

      Dong Z, Lai X, Halpert J E, Yang N, Yi L, Zhai J, Wang D, Tang Z, Jiang L. Accurate control of multishelled ZnO hollow microspheres for dye sensitized solar cells with high efficiency[J]. Adv. Mater., 2012,24(8):1046-1049. doi: 10.1002/adma.201104626

    36. [36]

      Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle K A, Valanoor N, Ogale S B. TiO2 Au plasmonic nanocomposite for enhanced dye sensitized solar cell (DSSC) performance[J]. Sol. Energy, 2012,86(5):1428-1434. doi: 10.1016/j.solener.2012.02.002

  • 加载中
    1. [1]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    9. [9]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(7)
  • Abstract views(835)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return