Citation: Shuai XIAO, Kai-Wen CHEN, Ming-Hui ZHANG, Kai CHEN, Wei-Wei GE. Synthesis and fluorescence sensing properties of cucurbit[5]uril-based supramolecular self-assemblies incorporating naphthalene-2, 7-disulphonate as the structure-directing agent[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 585-595. doi: 10.11862/CJIC.2023.037 shu

Synthesis and fluorescence sensing properties of cucurbit[5]uril-based supramolecular self-assemblies incorporating naphthalene-2, 7-disulphonate as the structure-directing agent

  • Corresponding author: Kai CHEN, kaichen85@nuist.edu.cn
  • Received Date: 19 November 2022
    Revised Date: 14 February 2023

Figures(12)

  • Four new cucurbit[5]uril-based (Q[5]) supramolecular self-assemblies (Q[5]-SA), namely{[M (H2O)4(Q[5])]·(NDA)}·xH2O (M=Co (1), Ni (2), Zn (3)) and{[Cd2Cl2(H2O)4(Q[5])]·(NDA)}·13H2O (4), were synthesized by employing naphthalene-2, 7-disulphonate anion (2, 7-NDA2-) as the structure-directing agent to react with Q[5]and transition metal cations (Co2+, Ni2+, Zn2+, Cd2+) under hydrothermal conditions.Single-crystal X-ray diffraction (SC-XRD) results reveal that self-assemblies 1-3 are isostructural and the metal cations (Co2+, Ni2+, Zn2+) merely coordinate with the carbonyl groups from one portal of Q[5]to form simple coordination compounds, while the Cd2+ cation in selfassembly 4 is bound to both of the two portals of Q[5]to generate 1D coordination chains.In particular, the 2, 7NDA2- ligands in all self-assemblies are deprotonated to form organic anions 2, 7-NDA2-, which balanced the system charge.However, 2, 7-NDA2- fails to coordinate with the metal ions coordinated with Q[5], and these Q[5]-based coordination compounds are assembled into 3D supramolecular architectures through outer surface interactions of Q[5].Furthermore, the fluorescence sensing properties of 1 and 4 were investigated and the results indicated that they could both function as ratiometric fluorescence sensors for norfloxacin (NFX).
  • 加载中
    1. [1]

      Das R, Vecitis C D, Schulze A, Cao B, Ismail A F, Lu X, Chen J, Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring[J]. Chem. Soc. Rev., 2017,46(22):6946-7020. doi: 10.1039/C6CS00921B

    2. [2]

      Fatta D, Achilleos A, Nikolaou A, Meriç S. Analytical methods for tracing pharmaceutical residues in water and wastewater[J]. TrAC-Trend. Anal. Chem., 2007,26(6):515-533. doi: 10.1016/j.trac.2007.02.001

    3. [3]

      Hong Y Q, Guo X, Chen G H, Zhou J W, Zou X M, Liao X, Hou T. Determination of five macrolide antibiotic residues in milk by micellar electrokinetic capillary chromatography with field amplified sample stacking[J]. J. Food Saf., 2018,38(1)e12382.

    4. [4]

      Ternes T A, Bonerz M, Herrmann N, Löffler D, Keller E, Lacida B B, Alder A C. Determination of pharmaceuticals, iodinated contrast media and musk fragrances in sludge by LC tandem MS and GC/MS[J]. J. Chromatogr. A, 2005,1067(1):213-223.

    5. [5]

      Li G, Wang T, Zhou S H, Wang J, Lv H, Han M L, Singh D P, Kumar A, Jin J C. New highly luminescent 3D Tb(Ⅲ)-MOF as selective sensor for antibiotics[J]. Inorg. Chem. Commun., 2021,130108756. doi: 10.1016/j.inoche.2021.108756

    6. [6]

      Shi L L, Liu M, Fang C, Zhu X F, Li H. A cucurbit[6]uril-based supramolecular assembly test strip for immediate detection of nitrofuran antibiotics in water[J]. CrystEngComm, 2020,22(44):7660-7667. doi: 10.1039/D0CE01294G

    7. [7]

      Shi L L, Liu M, Li H. A cucurbit[6]uril-based supramolecular assembly as a highly sensitive and quickly responsive luminescent sensor for the detection of fluoroquinolone antibiotics in simulated wastewater[J]. CrystEngComm, 2020,22(22):3753-3758. doi: 10.1039/D0CE00603C

    8. [8]

      Xu N, Zhang Q H, Hou B S, Cheng Q, Zhang G A. A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe(Ⅲ) ions, pesticides, and antibiotics with high selectivity and sensitivity[J]. Inorg. Chem., 2018,57(21):13330-13340. doi: 10.1021/acs.inorgchem.8b01903

    9. [9]

      Ying Y M, Tao C L, Yu M, Xiong Y, Guo C R, Liu X G, Zhao Z. In situ encapsulation of pyridine substituted tetraphenylethene cations in metal organic framework for the detection of antibiotics in aqueous medium[J]. J. Mater. Chem. C, 2019,7(27):8383-8388. doi: 10.1039/C9TC02229E

    10. [10]

      Tian J, Wang H, Zhang D W, Liu Y, Li Z T. Supramolecular organic frameworks (SOFs): Homogeneous regular 2D and 3D pores in water[J]. Natl. Sci. Rev., 2017,4(3):426-436. doi: 10.1093/nsr/nwx030

    11. [11]

      Chen K, Hua Z Y, Li R, Peng Y Y, Zhu Z Q, Zhao J L, Redshaw C. Assemblies of cucurbit[6]uril based coordination complexes with disulfonate ligands: From discrete complexes to oneand two-dimensional polymers[J]. CrystEngComm, 2021,23(2):465-481. doi: 10.1039/D0CE01456G

    12. [12]

      Ni X L, Xiao X, Cong H, Liang L L, Chen K, Cheng X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Cucurbit[n]uril-based coordination chemistry: From simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chem. Soc. Rev., 2013,429480. doi: 10.1039/c3cs60261c

    13. [13]

      Liu C, Xia Y, Tao Z, Ni X L. Host-guest interaction tailored cucurbit[6]uril based supramolecular organic frameworks (SOFs) for drug delivery[J]. Chin. Chem. Lett., 2022,33:1529-1532. doi: 10.1016/j.cclet.2021.08.108

    14. [14]

      Chen K, Hua Z Y, Zhao J L, Redshaw C, Tao Z. Construction of cucurbit[n]uril based supramolecular frameworks via host guest inclusion and functional properties thereof[J]. Inorg. Chem. Front., 2022,9:2753-2809.

    15. [15]

      Huang Y, Gao R H, Liu M, Chen L X, Ni X L, Xiao X, Cong H, Zhu Q J, Chen K, Tao Z. Cucurbit[n]uril based supramolecular frameworks assembled through outersurface interactions[J]. Angew. Chem. Int. Ed., 2021,60(28):15166-15191. doi: 10.1002/anie.202002666

    16. [16]

      Gao R H, Huang Y, Chen K, Tao Z. Cucurbit[n]uril/metal ion complexbased frameworks and their potential applications[J]. Coord. Chem. Rev., 2021,437213741. doi: 10.1016/j.ccr.2020.213741

    17. [17]

      Chen K, Hua Z Y, Zhao J L, Redshaw C, Tao Z. Construction of cucurbit[n]uril based supramolecular frameworks via host-guest inclusion and functional properties thereof[J]. Inorg. Chem. Front., 2022,9:2753-2809.

    18. [18]

      Day A I, Arnold A P. Method for synthesis cucurbiturils: WO 0068232. 2000-08

    19. [19]

      Sheldrick G M. SHELXS-97, Program for the solution of crystal structure. University of Göttingen, Germany, 1997.

    20. [20]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    21. [21]

      Chernikova E Y, Grachev A I, Peregudov A S, Fedorova O A, Fedorov Y V. Reversible ON-OFF switching of FRET effect in the functionalized CB[6] guest complex via photoisomerization[J]. Dyes Pigm., 2021,189109194. doi: 10.1016/j.dyepig.2021.109194

    22. [22]

      Qasem M, Kurdi E R, Patra D. Preparation of curcubit[6]uril functionalized CuO nanoparticles: A new nanosensing scheme based on fluorescence recovery after FRET for the label free determination of dopamine[J]. ChemistrySelect, 2020,5(15):4642-4649. doi: 10.1002/slct.202000595

    23. [23]

      Shen F F, Zhang Y M, Dai X Y, Zhang H Y, Liu Y. Alkyl-substituted cucurbit[6]uril bridged β-cyclodextrin dimer mediated intramolecular FRET behavior[J]. J. Org. Chem., 2020,85(9):6131-6136. doi: 10.1021/acs.joc.9b03513

    24. [24]

      Zeng Y, Shi Q K, Yang X R, Chatterjee S, Lv Z S, Liang F. Highly sensitive detection of CB[7] based on fluorescence resonance energy transfer between RhB and gold nanoparticles[J]. Curr. Nanosci., 2020,16(6):863-869.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    6. [6]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    13. [13]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    17. [17]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(3)
  • Abstract views(941)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return