Citation: Xiao-Min HOU, Si-Fu TANG. Heterometallic uranyl sulfophosphonates: Synthesis, crystal structures, and fluorescence properties[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(4): 746-752. doi: 10.11862/CJIC.2023.034 shu

Heterometallic uranyl sulfophosphonates: Synthesis, crystal structures, and fluorescence properties

  • Corresponding author: Si-Fu TANG, tangsf@qau.edu.cn
  • Received Date: 2 October 2022
    Revised Date: 17 January 2023

Figures(5)

  • It is still a great challenge to construct heterometallic uranyl phosphonates. In this work, a series of isostructural heterometallic uranyl sulfophosphonates, namely [UO2M(L)2(H2O)4], where M=Mn (1), Co (2), Ni (3), Zn (4), Cd (5) and Et2L=diethyl ((phenylsulfonyl)methyl)phosphonate, have been successfully synthesized and systematically characterized. The sulfonyl group is not involved in coordination with the metal centers, whereas the phosphonate group is fully deprotonated and connects with two uranyl cations and one transition metal ion, affording a 2D layered crystal structure. It was found that the luminescent emission was almost totally quenched in the presence of Mn(Ⅱ), Co(Ⅱ), and Ni(Ⅱ), whereas showed strong emissions in the presence of Zn(Ⅱ) and Cd(Ⅱ).
  • 加载中
    1. [1]

      Loiseau T, Mihalcea I, Henry N, Volkringer C. The crystal chemistry of uranium carboxylates[J]. Coord. Chem. Rev., 2014,266-267:69-109. doi: 10.1016/j.ccr.2013.08.038

    2. [2]

      Andrews M B, Cahill C L. Uranyl bearing hybrid materials: Synthesis, speciation, and solid-state structures[J]. Chem. Rev., 2013,113:1121-1136. doi: 10.1021/cr300202a

    3. [3]

      Wu D, Mo X F, He P, Li H R, Yi X Y, Liu C. 3D uranyl organic frameworks supported by rigid octadentate carboxylate ligand: Synthesis, structure diversity, and luminescence properties[J]. Chem.-Eur. J., 2021,27:10313-10322. doi: 10.1002/chem.202100099

    4. [4]

      Li F Z, Geng J S, Hu K Q, Yu J P, Liu N, Chai Z F, Mei L, Shi W Q. Proximity effect in uranyl coordination of the cucurbit[6]uril-bipyridinium pseudorotaxane ligand for promoting host-guest synergistic chelating[J]. Inorg. Chem., 2021,60:10522-10534. doi: 10.1021/acs.inorgchem.1c01177

    5. [5]

      Thuéry P, Harrowfield J. Ni(2,2':6',2″-terpyridine-4'-carboxylate)2 zwitterions and carboxylate polyanions in mixed-ligand uranyl ion complexes with a wide range of topologies[J]. Inorg. Chem., 2022,61:9725-9745. doi: 10.1021/acs.inorgchem.2c01220

    6. [6]

      Wang Y L, Liu Z Y, Li Y X, Bai Z L, Liu W, Wang Y X, Xu X M, Xiao C L, Sheng D P, Diwu J, Su J, Chai Z F, Albrecht-Schmitt T E, Wang S A. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions[J]. J. Am. Chem. Soc., 2015,137:6144-6147. doi: 10.1021/jacs.5b02480

    7. [7]

      Xie J, Wang Y X, Liu W, Yin X M, Chen L H, Zou Y M, Diwu J, Chai Z F, Albrecht-Schmitt T E, Liu G K, Wang S A. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework[J]. Angew. Chem. Int. Ed., 2017,56:7500-7504. doi: 10.1002/anie.201700919

    8. [8]

      Hu K Q, Jiang X, Wang C Z, Mei L, Xie Z N, Tao W Q, Zhang X L, Chai Z F, Shi W Q. Solvent-dependent synthesis of porous anionic uranyl-organic frameworks featuring a highly symmetrical (3, 4)-connected ctn or bor topology for selective dye adsorption[J]. Chem.-Eur. J., 2017,23:529-532. doi: 10.1002/chem.201604225

    9. [9]

      Xu M M, Lu H J, Wang C H, Qiu J, Zheng Z F, Guo X F, Zhang Z H, He M Y, Qian J F, Lin J. Enhancing photosensitivity via the assembly of a uranyl coordination polymer[J]. Chem. Commun., 2022,58:9389-9392. doi: 10.1039/D2CC02985E

    10. [10]

      Li Y X, Yang Z X, Wang Y L, Bai Z L, Zheng T, Dai X, Liu S T, Gui D X, Liu W, Chen M, Chen L H, Diwu J, Zhu L Y, Zhou R H, Chai Z F, Albrecht-Schmitt T E, Wang S A. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nat. Commun., 2017,8:1354-1364. doi: 10.1038/s41467-017-01208-w

    11. [11]

      Liu D D, Wang Y L, Luo F, Liu Q Y. Rare three-dimensional uranyl-biphenyl-3, 3'-disulfonyl-4, 4'-dicarboxylate frameworks: Crystal structures, proton conductivity, and luminescence[J]. Inorg. Chem., 2020,59:2952-2960. doi: 10.1021/acs.inorgchem.9b03323

    12. [12]

      Gui D X, Duan W C, Shu J, Zhai F W, Wang N, Wang X X, Xie J, Li H, Chen LH, Diwu J, Chai Z F, Wang S A. Persistent superprotonic conductivity in the order of 10-1 S·cm-1 achieved through thermally induced structural transformation of a uranyl coordination polymer[J]. CCS Chem., 2019,1:197-206. doi: 10.31635/ccschem.019.20190004

    13. [13]

      Yang W T, Parker G, Sun Z M. Structural chemistry of uranium phosphonates[J]. Coord. Chem. Rev., 2015,303:86-109. doi: 10.1016/j.ccr.2015.05.010

    14. [14]

      Liu C, Yang W T, Qu N, Li L J, Pan Q J, Sun Z M. Construction of uranyl organic hybrids by phosphonate and in situ generated carboxyphosphonate ligands[J]. Inorg. Chem., 2017,56:1669-1678. doi: 10.1021/acs.inorgchem.6b02765

    15. [15]

      Adelani P O, Martinez N A, Cook N D, Burns P C. Uranyl-organic hybrids designed from hydroxyphosphonate[J]. Eur. J. Inorg. Chem., 2015:340-347.

    16. [16]

      Adelani P O, Soriano J S, Galeas B E, Sigmon G E, Szymanowski J E S, Burns P C. Hybrid uranyl-phosphonate coordination nanocage[J]. Inorg. Chem., 2019,58(19):12662-12668. doi: 10.1021/acs.inorgchem.9b01448

    17. [17]

      Tang S F, Hou X M. Structural tuning and sensitization of uranyl phosphonates by incorporation of countercations into the framework[J]. Inorg. Chem., 2019,58:1382-1390. doi: 10.1021/acs.inorgchem.8b02904

    18. [18]

      Wen G H, Zou Q, Huang X D, Zhang K, Bao S S, Zheng L M. Heterometallic uranyl-organic frameworks incorporating manganese and copper: Structures, ammonia sorption and magnetic properties[J]. Polyhedron, 2021,205115327. doi: 10.1016/j.poly.2021.115327

    19. [19]

      Wen G H, Zou Q, Xu K, Huang X D, Bao S S, Chen X T, Ouyang Z, Wang Z, Zheng L M. Layered uranyl phosphonates encapsulating Co(Ⅱ)/Mn(Ⅱ)/Zn(Ⅱ) ions: Exfoliation into nanosheets and its impact on magnetic and luminescent properties[J]. Chem.-Eur. J., 2022,28(42)e202200721.

    20. [20]

      Diwu J, Wang S A, Good J J, DiStefano V H, Albrecht-Schmitt T E. Deviation between the chemistry of Ce(Ⅳ) and Pu(Ⅳ) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates[J]. Inorg. Chem., 2011,50(11):4842-4850. doi: 10.1021/ic200006m

    21. [21]

      Thuéry P, Atoini Y, Harrowfield J. Zero-, mono- and diperiodic uranyl ion complexes with the diphenate dianion: Influences of transition metal ion coordination and differential U chelation[J]. Dalton Trans., 2020,49:817-828. doi: 10.1039/C9DT04126E

    22. [22]

      Kumar S, Maji S, Sundararajan K. Enhanced luminescence of tris (carboxylato)uranyl (Ⅵ) complexes and energy transfer to Eu(Ⅲ): A combined spectroscopic and theoretical investigation[J]. Dalton Trans., 2022,51:9803-9817. doi: 10.1039/D2DT00849A

    23. [23]

      Hou J J, Zhang X M. Structures and magnetic properties of a series of metal phosphonoacetates synthesized from in situ hydrolysis of triethyl phosphonoacetate[J]. Cryst. Growth Des., 2006,6(6):1445-1452. doi: 10.1021/cg0600750

    24. [24]

      Hix G B, Turner A, Kariuki B M, Tremayne M, MacLean E J. Strategies for the synthesis of porous metal phosphonate materials[J]. J. Mater. Chem., 2002,12(11):3220-3227. doi: 10.1039/B204131F

    25. [25]

      Hou X M, Tang S F. Lanthanide-uranyl phosphonates constructed from diethyl ((phenylsulfonyl)methyl)phosphonate[J]. Dalton Trans., 2022,51:1041-1047. doi: 10.1039/D1DT03596G

    26. [26]

      QU Z R. Uranium(Ⅵ) metal-organic framework with atropisomeric dicarboxylic ligand[J]. Chinese J. Inorg. Chem., 2007,23(12):2126-2127. doi: 10.3321/j.issn:1001-4861.2007.12.024

    27. [27]

      JIANG W J, LI A D, TANG M H, NAN X L, TAN Y L, TAN Y X. Solvothermal self-assembly syntheses, crystal structures and property of two uranyl complexes with organic ligand containing N and O atoms[J]. Chinese J. Inorg. Chem., 2021,37(12):2209-2218.  

    28. [28]

      WANG J, LÜ X, LI Z Y, ZHANG Y Y, CHENG S Y. Synthesis, crystal structure of uranium-potassium heteronuclear coordination polymer[J]. Chinese J. Inorg. Chem., 2011,27(3):580-584.  

    29. [29]

      Zheng T, Gao Y, Chen L H, Liu Z Y, Diwu J, Chai Z F, Albrecht-Schmitt T E, Wang S A. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: Structure and spectroscopy characterizations[J]. Dalton Trans., 2015,44:18158-18166. doi: 10.1039/C5DT02667A

    30. [30]

      Su J, Zhang K, Schwarz W H E, Li J. Uranyl-glycine-water complexes in solution: Comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties[J]. Inorg. Chem., 2011,50:2082-2093. doi: 10.1021/ic200204p

    31. [31]

      Zheng T, Wu Q Y, Gao Y, Gui D X, Qiu S W, Chen L H, Sheng D P, Diwu J, Shi W Q, Chai Z F, Albrecht-Schmitt T E, Wang S A. Probing the influence of phosphonate bonding modes to uranium(Ⅵ) on structural topology and stability: A complementary experimental and computational investigation[J]. Inorg. Chem., 2015,54:3864-3874. doi: 10.1021/acs.inorgchem.5b00024

    32. [32]

      Denning R G. Electronic structure and bonding in actinyl ions and their analogs[J]. J. Phys. Chem. A, 2007,111:4125-4143. doi: 10.1021/jp071061n

    33. [33]

      Thuéry P, Harrowfield J. Uranyl ion complexes with 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid: Structural and spectroscopic studies of one- to three-dimensional assemblies[J]. Inorg. Chem., 2015,54:6296-6305. doi: 10.1021/acs.inorgchem.5b00596

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    3. [3]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    4. [4]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    5. [5]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    14. [14]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    15. [15]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    16. [16]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    20. [20]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

Metrics
  • PDF Downloads(3)
  • Abstract views(1014)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return