Heterometallic uranyl sulfophosphonates: Synthesis, crystal structures, and fluorescence properties
- Corresponding author: Si-Fu TANG, tangsf@qau.edu.cn
Citation:
Xiao-Min HOU, Si-Fu TANG. Heterometallic uranyl sulfophosphonates: Synthesis, crystal structures, and fluorescence properties[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(4): 746-752.
doi:
10.11862/CJIC.2023.034
Loiseau T, Mihalcea I, Henry N, Volkringer C. The crystal chemistry of uranium carboxylates[J]. Coord. Chem. Rev., 2014,266-267:69-109. doi: 10.1016/j.ccr.2013.08.038
Andrews M B, Cahill C L. Uranyl bearing hybrid materials: Synthesis, speciation, and solid-state structures[J]. Chem. Rev., 2013,113:1121-1136. doi: 10.1021/cr300202a
Wu D, Mo X F, He P, Li H R, Yi X Y, Liu C. 3D uranyl organic frameworks supported by rigid octadentate carboxylate ligand: Synthesis, structure diversity, and luminescence properties[J]. Chem.-Eur. J., 2021,27:10313-10322. doi: 10.1002/chem.202100099
Li F Z, Geng J S, Hu K Q, Yu J P, Liu N, Chai Z F, Mei L, Shi W Q. Proximity effect in uranyl coordination of the cucurbit[6]uril-bipyridinium pseudorotaxane ligand for promoting host-guest synergistic chelating[J]. Inorg. Chem., 2021,60:10522-10534. doi: 10.1021/acs.inorgchem.1c01177
Thuéry P, Harrowfield J. Ni(2,2':6',2″-terpyridine-4'-carboxylate)2 zwitterions and carboxylate polyanions in mixed-ligand uranyl ion complexes with a wide range of topologies[J]. Inorg. Chem., 2022,61:9725-9745. doi: 10.1021/acs.inorgchem.2c01220
Wang Y L, Liu Z Y, Li Y X, Bai Z L, Liu W, Wang Y X, Xu X M, Xiao C L, Sheng D P, Diwu J, Su J, Chai Z F, Albrecht-Schmitt T E, Wang S A. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions[J]. J. Am. Chem. Soc., 2015,137:6144-6147. doi: 10.1021/jacs.5b02480
Xie J, Wang Y X, Liu W, Yin X M, Chen L H, Zou Y M, Diwu J, Chai Z F, Albrecht-Schmitt T E, Liu G K, Wang S A. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework[J]. Angew. Chem. Int. Ed., 2017,56:7500-7504. doi: 10.1002/anie.201700919
Hu K Q, Jiang X, Wang C Z, Mei L, Xie Z N, Tao W Q, Zhang X L, Chai Z F, Shi W Q. Solvent-dependent synthesis of porous anionic uranyl-organic frameworks featuring a highly symmetrical (3, 4)-connected ctn or bor topology for selective dye adsorption[J]. Chem.-Eur. J., 2017,23:529-532. doi: 10.1002/chem.201604225
Xu M M, Lu H J, Wang C H, Qiu J, Zheng Z F, Guo X F, Zhang Z H, He M Y, Qian J F, Lin J. Enhancing photosensitivity via the assembly of a uranyl coordination polymer[J]. Chem. Commun., 2022,58:9389-9392. doi: 10.1039/D2CC02985E
Li Y X, Yang Z X, Wang Y L, Bai Z L, Zheng T, Dai X, Liu S T, Gui D X, Liu W, Chen M, Chen L H, Diwu J, Zhu L Y, Zhou R H, Chai Z F, Albrecht-Schmitt T E, Wang S A. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nat. Commun., 2017,8:1354-1364. doi: 10.1038/s41467-017-01208-w
Liu D D, Wang Y L, Luo F, Liu Q Y. Rare three-dimensional uranyl-biphenyl-3, 3'-disulfonyl-4, 4'-dicarboxylate frameworks: Crystal structures, proton conductivity, and luminescence[J]. Inorg. Chem., 2020,59:2952-2960. doi: 10.1021/acs.inorgchem.9b03323
Gui D X, Duan W C, Shu J, Zhai F W, Wang N, Wang X X, Xie J, Li H, Chen LH, Diwu J, Chai Z F, Wang S A. Persistent superprotonic conductivity in the order of 10-1 S·cm-1 achieved through thermally induced structural transformation of a uranyl coordination polymer[J]. CCS Chem., 2019,1:197-206. doi: 10.31635/ccschem.019.20190004
Yang W T, Parker G, Sun Z M. Structural chemistry of uranium phosphonates[J]. Coord. Chem. Rev., 2015,303:86-109. doi: 10.1016/j.ccr.2015.05.010
Liu C, Yang W T, Qu N, Li L J, Pan Q J, Sun Z M. Construction of uranyl organic hybrids by phosphonate and in situ generated carboxyphosphonate ligands[J]. Inorg. Chem., 2017,56:1669-1678. doi: 10.1021/acs.inorgchem.6b02765
Adelani P O, Martinez N A, Cook N D, Burns P C. Uranyl-organic hybrids designed from hydroxyphosphonate[J]. Eur. J. Inorg. Chem., 2015:340-347.
Adelani P O, Soriano J S, Galeas B E, Sigmon G E, Szymanowski J E S, Burns P C. Hybrid uranyl-phosphonate coordination nanocage[J]. Inorg. Chem., 2019,58(19):12662-12668. doi: 10.1021/acs.inorgchem.9b01448
Tang S F, Hou X M. Structural tuning and sensitization of uranyl phosphonates by incorporation of countercations into the framework[J]. Inorg. Chem., 2019,58:1382-1390. doi: 10.1021/acs.inorgchem.8b02904
Wen G H, Zou Q, Huang X D, Zhang K, Bao S S, Zheng L M. Heterometallic uranyl-organic frameworks incorporating manganese and copper: Structures, ammonia sorption and magnetic properties[J]. Polyhedron, 2021,205115327. doi: 10.1016/j.poly.2021.115327
Wen G H, Zou Q, Xu K, Huang X D, Bao S S, Chen X T, Ouyang Z, Wang Z, Zheng L M. Layered uranyl phosphonates encapsulating Co(Ⅱ)/Mn(Ⅱ)/Zn(Ⅱ) ions: Exfoliation into nanosheets and its impact on magnetic and luminescent properties[J]. Chem.-Eur. J., 2022,28(42)e202200721.
Diwu J, Wang S A, Good J J, DiStefano V H, Albrecht-Schmitt T E. Deviation between the chemistry of Ce(Ⅳ) and Pu(Ⅳ) and routes to ordered and disordered heterobimetallic 4f/5f and 5f/5f phosphonates[J]. Inorg. Chem., 2011,50(11):4842-4850. doi: 10.1021/ic200006m
Thuéry P, Atoini Y, Harrowfield J. Zero-, mono- and diperiodic uranyl ion complexes with the diphenate dianion: Influences of transition metal ion coordination and differential UⅥ chelation[J]. Dalton Trans., 2020,49:817-828. doi: 10.1039/C9DT04126E
Kumar S, Maji S, Sundararajan K. Enhanced luminescence of tris (carboxylato)uranyl (Ⅵ) complexes and energy transfer to Eu(Ⅲ): A combined spectroscopic and theoretical investigation[J]. Dalton Trans., 2022,51:9803-9817. doi: 10.1039/D2DT00849A
Hou J J, Zhang X M. Structures and magnetic properties of a series of metal phosphonoacetates synthesized from in situ hydrolysis of triethyl phosphonoacetate[J]. Cryst. Growth Des., 2006,6(6):1445-1452. doi: 10.1021/cg0600750
Hix G B, Turner A, Kariuki B M, Tremayne M, MacLean E J. Strategies for the synthesis of porous metal phosphonate materials[J]. J. Mater. Chem., 2002,12(11):3220-3227. doi: 10.1039/B204131F
Hou X M, Tang S F. Lanthanide-uranyl phosphonates constructed from diethyl ((phenylsulfonyl)methyl)phosphonate[J]. Dalton Trans., 2022,51:1041-1047. doi: 10.1039/D1DT03596G
QU Z R. Uranium(Ⅵ) metal-organic framework with atropisomeric dicarboxylic ligand[J]. Chinese J. Inorg. Chem., 2007,23(12):2126-2127. doi: 10.3321/j.issn:1001-4861.2007.12.024
JIANG W J, LI A D, TANG M H, NAN X L, TAN Y L, TAN Y X. Solvothermal self-assembly syntheses, crystal structures and property of two uranyl complexes with organic ligand containing N and O atoms[J]. Chinese J. Inorg. Chem., 2021,37(12):2209-2218.
WANG J, LÜ X, LI Z Y, ZHANG Y Y, CHENG S Y. Synthesis, crystal structure of uranium-potassium heteronuclear coordination polymer[J]. Chinese J. Inorg. Chem., 2011,27(3):580-584.
Zheng T, Gao Y, Chen L H, Liu Z Y, Diwu J, Chai Z F, Albrecht-Schmitt T E, Wang S A. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: Structure and spectroscopy characterizations[J]. Dalton Trans., 2015,44:18158-18166. doi: 10.1039/C5DT02667A
Su J, Zhang K, Schwarz W H E, Li J. Uranyl-glycine-water complexes in solution: Comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties[J]. Inorg. Chem., 2011,50:2082-2093. doi: 10.1021/ic200204p
Zheng T, Wu Q Y, Gao Y, Gui D X, Qiu S W, Chen L H, Sheng D P, Diwu J, Shi W Q, Chai Z F, Albrecht-Schmitt T E, Wang S A. Probing the influence of phosphonate bonding modes to uranium(Ⅵ) on structural topology and stability: A complementary experimental and computational investigation[J]. Inorg. Chem., 2015,54:3864-3874. doi: 10.1021/acs.inorgchem.5b00024
Denning R G. Electronic structure and bonding in actinyl ions and their analogs[J]. J. Phys. Chem. A, 2007,111:4125-4143. doi: 10.1021/jp071061n
Thuéry P, Harrowfield J. Uranyl ion complexes with 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid: Structural and spectroscopic studies of one- to three-dimensional assemblies[J]. Inorg. Chem., 2015,54:6296-6305. doi: 10.1021/acs.inorgchem.5b00596
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Thermal ellipsoids are given at 30% probability; Symmetry codes: A: 0.5-x, y, 1-z; B: x, 1+y, z; C: 0.5-x, 1+y, 1-z; D: 0.5-x, -0.5-y, 0.5-z; E: x, -1+y, z
UO6, MnO6, and CPO3 polyhedrons are shaded in yellow, pink, and cyan, respectively; The π…π interactions are shown as green dotted lines; Symmetry codes: A: 0.5-x, y, 1-z; B: x, 1+y, z; C: 0.5-x, 1+y, 1-z; D: 0.5-x, -0.5-y, 0.5-z; E: x, -1+y, z