Citation: Meng-Ya AN, Quan XIE, Guo-Lin QIAN, Qian LIANG, Rong CHEN, He-Sen ZHANG, Yuan-Fan WANG. First-principles study on the transition metal atoms X (X=Mn, Fe, Co) doped Janus WSSe monolayer[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 272-280. doi: 10.11862/CJIC.2023.004 shu

First-principles study on the transition metal atoms X (X=Mn, Fe, Co) doped Janus WSSe monolayer

  • Corresponding author: Quan XIE, qxie@gzu.edu.cn
  • Received Date: 25 July 2022
    Revised Date: 5 December 2022

Figures(5)

  • Two-dimensional (2D) Janus WSSe, as an emerging transition metal dichalcogenides (TMDs) material, breaks the out-of-plane mirror symmetry and possesses abundant physical properties such as intrinsic vertical piezo-electricity and strong Rashba spin-orbit coupling effect, which has great application potential in spintronic devices. In this paper, the electronic structures, magnetic and optical properties of the Janus WSSe monolayer doped with transition metal atoms X (X=Mn, Fe, Co) were calculated using the first-principles plane wave method based on density functional theory. The results show that doping under Chalcogen-rich (chalcogen element is the majority element) condition exhibits higher stability than under W-rich (tungsten element is the majority element) condition, and all systems exhibit magnetic properties after doping. After Mn doping, the impurity levels appear in the spin-up channel, which changes the WSSe system from a non-magnetic semiconductor to a ferromagnetic semi-metal with a magnetic moment of 1.043μB. After Fe and Co doping, the impurity levels appear in both the spin-up and spin-down channels, making the Fe and Co-doped systems exhibit a metallic nature with magnetic moments of 1.584μB and 2.739μB, respectively. In addition, the static dielectric constant of the doped system is significantly increased, the polarization degree is enhanced, and both the imaginary part of the dielectric function and the optical absorption peak are red-shifted, indicating that doping is beneficial to the absorption of visible light.
  • 加载中
    1. [1]

      Das R, Kalappattil V, Phan M H, Srikanth H. Magnetic anomalies associated with domain wall freezing and coupled electron hopping in magnetite nanorods[J]. J. Magn. Magn. Mater., 2021,522167564. doi: 10.1016/j.jmmm.2020.167564

    2. [2]

      Datta S, Das B. Electronic analog of the electro-optic modulator[J]. Appl. Phys. Lett., 1990,56(7):665-667. doi: 10.1063/1.102730

    3. [3]

      Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides[J]. Nat. Rev. Mater., 2017,2(8):1-15.

    4. [4]

      Xu R Z, Zou X L, Liu B L, Cheng H M. Computational design and property predictions for two-dimensional nanostructures[J]. Mater. Today, 2018,21(4):391-418. doi: 10.1016/j.mattod.2018.03.003

    5. [5]

      Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    6. [6]

      He Q Y, Zeng Z Y, Yin Z Y, Li H, Wu S X, Huang X, Zhang H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications[J]. Small, 2012,8(19):2994-2999. doi: 10.1002/smll.201201224

    7. [7]

      Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett., 2012,12(7):3788-3792. doi: 10.1021/nl301702r

    8. [8]

      Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Lin L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire[J]. Nat. Nanotechnol., 2021,16(11):1201-1207. doi: 10.1038/s41565-021-00963-8

    9. [9]

      Liu L, Li T T, Ma L, Li W S, Gao S, Sun W J, Dong R K, Zou X L, Fan D X, Shao L W, Gu Z Y, Dai N X, Yu Z H, Chen X Q, Tu X C, Nie Y F, Wang P, Wang J L, Shi Y, Wang X R. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire[J]. Nature, 2022,605(7908):69-75. doi: 10.1038/s41586-022-04523-5

    10. [10]

      Dong R K, Gong X S, Yang J F, Sun Y M, Ma L, Wang J L. The intrinsic thermodynamic difficulty and a step-guided mechanism for the epitaxial growth of uniform multilayer MoS2 with controllable thickness[J]. Adv. Mater., 20222201402.

    11. [11]

      Wang J H, Xu X Z, Cheng T, Gu L H, Qiao R X, Liang Z H, Ding D D, Hong H, Zheng P M, Zhang Z B, Zhang Z H, Zhang S, Cui G L, Chang C, Huang C, Qi J J, Liang J, Liu C, Zuo Y G, Xue G D, Fang X J, Tian J P, Wu M H, Guo Y, Yao Z X, Jiao Q Z, Liu L, Gao P, Li Q Y, Yang R, Zhang G Y, Tang Z L, Yu D P, Wang E G, Lu J M, Jiao Q Z, Zhao Y, Wu S W, Ding F, Liu K H. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nat. Nanotechnol., 2022,17(1):33-38. doi: 10.1038/s41565-021-01004-0

    12. [12]

      Wang K, Zhang L Z, Nguyen G D, Sang X H, Liu C Z, Yu Y L, Ko W, Unocic R R, Puretzky A A, Rouleau C M, Geohegan D B, Fu L, Duscher G, Li A P, Yoon M, Xiao K. Selective antisite defect formation in WS2 monolayers via reactive growth on dilute W-Au alloy substrates[J]. Adv. Mater., 2022,34(3)2106674. doi: 10.1002/adma.202106674

    13. [13]

      Wang Z H, Zhang Y N, Ren Y B, Wang M M, Zhang Z Y, Zhao W, Yan J F, Zhai C X, Yun J N. NO gas adsorption properties of MoS2 from monolayer to trilayer: A first-principles study[J]. Mater. Res. Express, 2021,8(1)015024. doi: 10.1088/2053-1591/abdb50

    14. [14]

      Li B L, Zhou Q, Peng R C, Liao Y M, Zeng W. Adsorption of SF6 decomposition gases (H2S, SO2, SOF2 and SO2F2) on Sc-doped MoS2 surface: A DFT study[J]. Appl. Surf. Sci., 2021,549149271. doi: 10.1016/j.apsusc.2021.149271

    15. [15]

      Sahoo M P K, Wang J, Zhang Y J, Shimada T, Kitamura T. Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain[J]. J. Phys. Chem. C, 2016,120(26):14113-14121. doi: 10.1021/acs.jpcc.6b03284

    16. [16]

      Enujekwu F M, Zhang Y, Ezeh C I, Zhao H T, Xu M X, Besley E, George M W, Besley N A, Do H, Wu T. N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach[J]. Appl. Surf. Sci., 2021,542148556. doi: 10.1016/j.apsusc.2020.148556

    17. [17]

      Abbasi A, Abdelrasoul A, Sardroodi J J. Adsorption of CO and NO molecules on Al, P and Si embedded MoS2 nanosheets investigated by DFT calculations[J]. Adsorption, 2019,25(5):1001-1017. doi: 10.1007/s10450-019-00121-6

    18. [18]

      Abbasi A, Sardroodi J J. Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: A computational investigation[J]. Appl. Surf. Sci., 2019,469:781-791. doi: 10.1016/j.apsusc.2018.11.039

    19. [19]

      Xu S Q, Zhang Y, Xu F, Chen C R, Shen Z H. Theoretical study of the adsorption behaviors of gas molecules on the Au-functionalized MoS2 nanosheets: A search for highly efficient gas sensors[J]. Comput. Theor. Chem., 2020,1188112935. doi: 10.1016/j.comptc.2020.112935

    20. [20]

      Wu Y C, Ringe S, Wu C L, Chen W, Yang A, Chen H, Tang M, Zhou G M, Hwang H Y, Chan K, Cui Y. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA)[J]. Nano Lett., 2019,19(10):7293-7300. doi: 10.1021/acs.nanolett.9b02888

    21. [21]

      Fan Y H, Zhang J Y, Qiu Y Z, Zhu J, Zhang Y F, Hu G L. A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J]. Comput. Mater. Sci., 2017,138:255-266. doi: 10.1016/j.commatsci.2017.06.029

    22. [22]

      Kumar R, Zheng W, Liu X H, Zhang J, Kumar M. MoS2-based nanomaterials for room-temperature gas sensors[J]. Adv. Mater. Technol., 2020,5(5)1901062. doi: 10.1002/admt.201901062

    23. [23]

      Zheng W, Xu Y S, Zheng L L, Yang C, Pinna N, Liu X H, Zhang J. MoS2 van der Waals p-n junctions enabling highly selective room-temperature NO2 sensor[J]. Catal. Sci. Technol., 2020,30(19)2000435.

    24. [24]

      Bian J J, Sun C W. Piezotronic-enhanced oxygen evolution reaction enabled by a Au/MoS2 nanosheet catalyst[J]. Catal. Sci. Technol., 2020,10(18):6180-6187. doi: 10.1039/C9CY02611H

    25. [25]

      Zheng M, Zhao L, Cao L Y, Zhang C Y, Gao J S, Xu C M. Catalysis performance of nonpromoted and co-promoted MoS2 catalysts on a hydrodesulfurization reaction: A DFT study[J]. Mol. Catal., 2019,467:38-51. doi: 10.1016/j.mcat.2019.01.026

    26. [26]

      Cao J, Li A, Zhang Y, Mu L C, Huang X, Li Y K, Yang T, Zhang C, Zhou C S. Highly efficient unsupported Co-doped nano-MoS2 catalysts for p-cresol hydrodeoxygenation[J]. Mol. Catal., 2021,505111507. doi: 10.1016/j.mcat.2021.111507

    27. [27]

      Lu A Y, Zhu H Y, Xiao J, Chuu C P, Han Y M, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y M, Wang Y, Sokaras D, Nordlund D, Yang P D, Muller D A, Chou M Y, Zhang X, Li L J. Janus mono-layers of transition metal dichalcogenides[J]. Nat. Nanotechnol., 2017,12(8):744-749. doi: 10.1038/nnano.2017.100

    28. [28]

      Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J. Janus monolayer transition-metal dichalcogenides[J]. ACS Nano, 2017,11(8):8192-8198. doi: 10.1021/acsnano.7b03186

    29. [29]

      Ng S W, Noor N, Zheng Z J. Graphene-based two-dimensional Janus materials[J]. NPG Asia Mater., 2018,10(4):217-237. doi: 10.1038/s41427-018-0023-8

    30. [30]

      Sun W T, Han Y, Li Z H, Ge K, Zhang J C. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis[J]. Langmuir, 2016,32(36):9237-9244. doi: 10.1021/acs.langmuir.6b02228

    31. [31]

      Xia C X, Xiong W Q, Du J, Wang T X, Peng Y T, Li J B. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides[J]. Phys. Rev. B, 2018,98(16)165424. doi: 10.1103/PhysRevB.98.165424

    32. [32]

      Li R P, Cheng Y C, Huang W. Recent progress of Janus 2D transition metal chalcogenides: From theory to experiments[J]. Small, 2018,14(45)1802091. doi: 10.1002/smll.201802091

    33. [33]

      Lin Y C, Liu C Z, Yu Y L, Zarkadoula E, Yoon M, Puretzky A A, Liang L B, Kong X R, Gu Y Y, Strasser A, Meyer LLL H M, Lorenz M, Chisholm M F, Lvanor L N, Rouleau C M, Duscher G, Xiao K, Geohegan D B. Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures[J]. ACS Nano, 2020,14(4):3896-3906. doi: 10.1021/acsnano.9b10196

    34. [34]

      Chaurasiya R, Dixit A. Ultrahigh sensitivity with excellent recovery time for NH 3 and NO2 in pristine and defect mediated Janus WSSe monolayers[J]. Phys. Chem. Chem. Phys., 2020,22(25):13903-13922. doi: 10.1039/D0CP02063J

    35. [35]

      Ju L, Bie M, Tang X, Shang J, Kou L Z. Janus WSSe monolayer: An excellent photocatalyst for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2020,12(26):29335-29343.

    36. [36]

      Zhao X W, Qiu B, Hu G C, Yue W W, Ren J F, Yuan X B. Transition-metal doping/adsorption induced valley polarization in Janus WSSe: First-principles calculations[J]. Appl. Surf. Sci., 2019,490:172-177. doi: 10.1016/j.apsusc.2019.06.051

    37. [37]

      Chaurasiya R, Dixit A, Pandey R. Strain-mediated stability and electronic properties of WS2, Janus WSSe and WSe2 monolayers[J]. Superlattices Microstruct., 2018,122:268-279. doi: 10.1016/j.spmi.2018.07.039

    38. [38]

      Ju L, Tang X, Li J, Shi L R, Yuan D. Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhanced photocatalytic overall water-splitting[J]. Appl. Surf. Sci., 2022,574151692. doi: 10.1016/j.apsusc.2021.151692

    39. [39]

      Zhang Y F, Pan J B, Du S X. Geometric, electronic, and optical properties of MoS2/WSSe van der Waals heterojunctions: A first-principles study[J]. Nanotechnology, 2021,32(35)55705.

    40. [40]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16)11169. doi: 10.1103/PhysRevB.54.11169

    41. [41]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18)3865. doi: 10.1103/PhysRevLett.77.3865

    42. [42]

      Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24)17953. doi: 10.1103/PhysRevB.50.17953

    43. [43]

      Kang J, Tongay S, Zhou J, Li J B, Wu J Q. Band offsets and hetero-structures of two-dimensional semiconductors[J]. Appl. Phys. Lett., 2013,102(1)012111. doi: 10.1063/1.4774090

    44. [44]

      Chen K, Tang W Q, Fu M M, Li X, Ke C M, Wu Y P, Wu Z M, Kang J Y. Manipulation of the magnetic properties of Janus WSSe mono-layer by the adsorption of transition metal atoms[J]. Nanoscale Res. Lett., 2021,16(1):1-8. doi: 10.1186/s11671-020-03464-0

    45. [45]

      Gillan M. Calculation of the vacancy formation energy in aluminium[J]. J. Phys.-Condes. Matter, 1989,1(4):689-711. doi: 10.1088/0953-8984/1/4/005

    46. [46]

      Dolui K, Rungger I, Pemmaraju C D, Sanvito S. Possible doping strategies for MoS2 monolayers: An ab initio study[J]. Phys. Rev. B, 2013,88(7)075420. doi: 10.1103/PhysRevB.88.075420

    47. [47]

      Yang Y, Feng Z Y, Zhang J M. Systematic first-principles study on the Ni and X (X=C, N, O, F, P, S, Cl, Se, and Te) codoped monolayer WS2 (W15Ni1S26X6)[J]. J. Magn. Magn. Mater., 2019,486165255. doi: 10.1016/j.jmmm.2019.165255

    48. [48]

      Wu C T, Halterman K. Spin transport in half-metallic ferromagnet-superconductor junctions[J]. Phys. Rev. B, 2018,98(5)054518. doi: 10.1103/PhysRevB.98.054518

    49. [49]

      WU Y X, HU Z X, GU S L, QU L C, LI T, ZHANG H. Electronic structure and optical properties of rare earth element (Y, La) doped in ZnO[J]. Acta Phys. Sin., 2011,60(1)017101.  

    50. [50]

      Peng Q, Wang Z Y, Sa B S, Wu B, Sun Z M. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures[J]. Sci. Rep., 2016,6(1)31994. doi: 10.1038/srep31994

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    13. [13]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    14. [14]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    15. [15]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(57)
  • Abstract views(2877)
  • HTML views(997)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return