Citation: Han-Mei HU, Tao WANG, Xiao-Hui LING, Lu-Lu PENG, Tao WANG, Yun-Yun HE, Yu-Ting SUN, Chong-Hai DENG. Preparation and photocatalytic CO2 reduction performance of BiOBr-OV/RGO composite[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(2): 234-244. doi: 10.11862/CJIC.2022.290 shu

Preparation and photocatalytic CO2 reduction performance of BiOBr-OV/RGO composite

  • Corresponding author: Chong-Hai DENG, chdeng@mail.ustc.edu.cn
  • Received Date: 17 July 2022
    Revised Date: 19 November 2022

Figures(10)

  • The binary composite (BiOBr/RGO) composed of tetragonal BiOBr nanosheet and reduced graphene oxide (RGO) was firstly prepared by hydrothermal synthesis method, and then photocatalyst BiOBr-OV/RGO with the rich oxygen vacancy (OV) was further obtained by vacuum heat treatment. The crystal structure, chemical composition, and photoelectric properties were characterized by various techniques. The as-prepared BiOBr-OV/RGO composite photocatalyst exhibited the best photocatalytic activity for photocatalytic CO2 reduction under the simulated solar light. The best evolution rate of the main reduction product CO reached 15.67 μmol·g-1·h-1, which was 4.5, 2.5, and 1.4 times that of pure BiOBr, BiOBr-OV, and BiOBr/RGO, respectively. Furthermore, the photocatalytic reaction mechanism for BiOBr-OV/RGO could be attributed to the enhanced visible light absorption and the efficient photogenerated charge carrier separation, thereby boosting the photocatalytic reaction activity.
  • 加载中
    1. [1]

      Chen D N, Zhang X G, Lee A F. Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals[J]. J. Mater. Chem. A, 2015,3(28):14487-14516. doi: 10.1039/C5TA01592H

    2. [2]

      Sun Z Y, Talreja N, Tao H C, Texter J, Muhler M. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges[J]. Angew. Chem. Int. Ed., 2018,57:7610-7627. doi: 10.1002/anie.201710509

    3. [3]

      Shen H D, Peppel T, Stunk J, Sun Z Y. Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective[J]. Sol. RRL, 2020,41900546. doi: 10.1002/solr.201900546

    4. [4]

      Zou J P, Wu D D, Luo J M, Xing Q J, Luo X B, Dong W H, Luo S L, Du H M, Suib S L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2[J]. ACS Catal., 2016,6(10):6861-6867. doi: 10.1021/acscatal.6b01729

    5. [5]

      Zhu M, Zhang L S, Liu S S, Wang D K, Qin Y C, Chen Y, Dai E L, Wang Y H, Xing Q J, Zou J P. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode[J]. Chin. Chem. Lett., 2020,31:1961-1965. doi: 10.1016/j.cclet.2020.01.017

    6. [6]

      Zhu S, Li X D, Jiao X C, Shao W W, Li L, Zu X L, Hu J, Zhu J F, Yan W S, Wang C M, Sun Y F, Xie Y. Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites[J]. Nano Lett., 2021,21(5):2324-2331. doi: 10.1021/acs.nanolett.1c00383

    7. [7]

      Chang X F, Huang J, Cheng C, Sui Q, Sha W, Ji G B, Deng S B, Yu G. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance[J]. Catal. Commun., 2010,11(5):460-464. doi: 10.1016/j.catcom.2009.11.023

    8. [8]

      Chen J, Guan M L, Cai W Z, Guo J J, Xiao C, Zhang G K. The dominant {001} facet-dependent enhanced visible-light photoactivity of ultrathin BiOBr nanosheets[J]. Phys. Chem. Chem. Phys., 2014,16(38):20909-20914. doi: 10.1039/C4CP02972K

    9. [9]

      Xu B Y, An Y, Liu Y Y, Qin X Y, Zhang X Y, Dai Y, Wang Z Y, Wang P, Whangbo M H, Huang B B. Enhancing the photocatalytic activity of BiOX (X=Cl, Br, and I), (BiO)2CO3 and Bi2O3 by modifying their surfaces with polar organic anions, 4-substituted thiophenolates[J]. J. Mater. Chem. A, 2017,5(27):14406-14414. doi: 10.1039/C7TA03970K

    10. [10]

      Ding C H, Ma Z Y, Han C Q, Liu X X, Jia Z Y, Xie H Q, Bao K Y, Ye L Q. Large-scale preparation of BiOX (X=Cl, Br) ultrathin nanosheets for efficient photocatalytic CO2 conversion[J]. J. Taiwan Inst. Chem. E, 2017,78:395-400. doi: 10.1016/j.jtice.2017.06.044

    11. [11]

      Ren X J, Li J B, Cao X Z, Wang B Y, Zhang Y F, Wei Y. Synergistic effect of internal electric field and oxygen vacancy on the photocatalytic activity of BiOBrxI1-x with isomorphous fluorine substitution[J]. J. Colloid Interface Sci., 2019,554:500-511. doi: 10.1016/j.jcis.2019.07.034

    12. [12]

      Tu W G, Zhou Y, Zou Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects[J]. Adv. Mater., 2014,45(35):4607-4626.

    13. [13]

      Yang C T, Wood B C, Bhethanabotla V R, Joseph B. CO2 adsorption on anatase TiO2 (101) surfaces in the presence of subnanometer Ag/ Pt clusters: Implications for CO2 photoreduction[J]. J. Phys. Chem. C, 2014,118(45):26236-26248. doi: 10.1021/jp509219n

    14. [14]

      White J L, Baruch M F, Pander Iii J E, Hu Y, Fortmeyer I C, Park J E, Zhang T, Liao K, Gu J, Yan Y, Shaw T W, Abelev E, Bocarsly A B. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chem. Rev., 2015,115(23):12888-12935. doi: 10.1021/acs.chemrev.5b00370

    15. [15]

      Zhao J L, Miao Z R, Zhang Y F, Wen G Y, Liu L H, Wang X X, Cao X Z, Wang B Y. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity[J]. J. Colloid Interface Sci., 2021,593:231-243. doi: 10.1016/j.jcis.2021.02.117

    16. [16]

      Guo W, Qin Q, Geng L, Wang D, Guo Y H, Yang Y X. Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures[J]. J. Hazard. Mater., 2016,308:374-385. doi: 10.1016/j.jhazmat.2016.01.077

    17. [17]

      Liu G P, Wang L, Chen X, Zhu X W, Wang B, Xu X Y, Chen Z R, Zhu W S, Li H M, Xia J X. Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: Steering charge transfer for efficient CO2 photoreduction[J]. Green Chem. Eng., 2021,3(2):157-164.

    18. [18]

      Yu C L, Fan C F, Meng X J, Yang K, Cao F F, Li X. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes[J]. React. Kinet. Mech. Catal., 2011,103(1):141-151. doi: 10.1007/s11144-011-0291-6

    19. [19]

      Miao Z R, Wang Q L, Zhang Y F, Meng L P, Wang X X. In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O[J]. Appl. Catal. B-Environ., 2022,301120802. doi: 10.1016/j.apcatb.2021.120802

    20. [20]

      Yu J G, Jin J, Cheng B, Jaroniec M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel[J]. J. Mater. Chem. A, 2014,2(10):3407-3416. doi: 10.1039/c3ta14493c

    21. [21]

      Gusain R, Kumar P, Sharma O P, Jain S L, Khatri O P. Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation[J]. Appl. Catal. B-Environ., 2016,181:352-362. doi: 10.1016/j.apcatb.2015.08.012

    22. [22]

      Wang X D, Li K L, He J, Yang J L, Dong F, Mai W J, Zhu M S. Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure[J]. Nano Energy, 2020,78105388. doi: 10.1016/j.nanoen.2020.105388

    23. [23]

      Devi P, Singh J P. Visible light induced selective photocatalytic reduction of CO2 to CH4 on In2O3-rGO nanocomposites[J]. J. CO2 Util., 2021,43101376. doi: 10.1016/j.jcou.2020.101376

    24. [24]

      Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M. Improved synthesis of graphene oxide[J]. ACS Nano, 2010,4(8):4806-4814. doi: 10.1021/nn1006368

    25. [25]

      Tu X M, Luo S L, Chen G X, Li J H. One-pot synthesis, characterization, and enhanced photocatalytic activity of a BiOBr-graphene composite[J]. Chemistry, 2012,18(45):14359-14366. doi: 10.1002/chem.201200892

    26. [26]

      Allagui L, Chouchene B, Gries T, Medjahdi G, Girot E, Framboisier X, Amara A B H, Balan L, Schneider R. Core/shell rGO/BiOBr particles with visible photocatalytic activity towards water pollutants[J]. Appl. Surf. Sci., 2019,490:580-591. doi: 10.1016/j.apsusc.2019.06.091

    27. [27]

      Cui C, Wang Y P, Liang D Y, Cui W, Hu H H, Lu B Q, Xu S, Li X Y, Wang C, Yang Y. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light[J]. Appl. Catal. B-Environ., 2014,158-159:150-160. doi: 10.1016/j.apcatb.2014.04.007

    28. [28]

      Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Chemical functionalization of graphene and its applications[J]. Prog. Mater. Sci., 2012,57(7):1061-1105. doi: 10.1016/j.pmatsci.2012.03.002

    29. [29]

      Yu Y, Liu Y, Wu X Q, Weng Z H, Hou Y, Wu L S. Enhanced visible light photocatalytic degradation of metoprolol by Ag-Bi2WO6-graphene composite[J]. Sep. Purif. Technol., 2015,142:1-7. doi: 10.1016/j.seppur.2014.12.025

    30. [30]

      Xu G H, Li M, Wang Y, Zheng N, Yang L, Yu H W, Yu Y. A novel Ag-BiOBr-rGO photocatalyst for enhanced ketoprofen degradation: Kinetics and mechanisms[J]. Sci. Total. Environ., 2019,678:173-180. doi: 10.1016/j.scitotenv.2019.04.418

    31. [31]

      Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal[J]. J. Mol. Catal. A-Chem., 2000,161:205-212. doi: 10.1016/S1381-1169(00)00362-9

    32. [32]

      Wang H, Yong D Y, Chen S C, Jiang S L, Zhang X D, Shao W, Zhang Q, Yan W S, Pan B C, Xie Y. Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. J. Am. Chem. Soc., 2018,140(5):1760-1766. doi: 10.1021/jacs.7b10997

    33. [33]

      Yang Q, Qin W Z, Xie Y, Zong K, Guo Y, Song Z Q, Luo G, Raza W, Hussain A, Ling Y, Luo J M, Zhang W, Ye H, Zhao J. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction[J]. Sep. Purif. Technol., 2022,298121603. doi: 10.1016/j.seppur.2022.121603

    34. [34]

      Ren X J, Gao M C, Zhang Y F, Zhang Z Z, Cao X Z, Wang B Y, Wang X X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism[J]. Appl. Catal. B, 2020,274119063. doi: 10.1016/j.apcatb.2020.119063

    35. [35]

      Chen J Y, Xiao X Y, Wang Y, Lu M L, Zeng X Y. Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline[J]. J. Alloy. Compd., 2019,800:88-98. doi: 10.1016/j.jallcom.2019.06.004

    36. [36]

      Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels[J]. Appl. Catal. B-Environ., 2016,187:281-290. doi: 10.1016/j.apcatb.2016.01.044

    37. [37]

      Deng C H, Wang T, Ye F, Ling X H, Peng L L, Hu H M, Yu H, Ding K Z, Wu Y P, Dong Q, Le H R, Han Y S. Construction of 0D/2D CuO/BiOBr hierarchical heterojunction for the enhanced photocatalytic degradation of benzene-containing pollutants under visible light[J]. J. Environ. Chem. Eng., 2022,10(3)107365. doi: 10.1016/j.jece.2022.107365

    38. [38]

      Sun G T, Xiao B, Shi J W, Mao S M, He C, Ma D D, Cheng Y H. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H2 evolution[J]. J. Colloid Interface Sci., 2021,596:215-224. doi: 10.1016/j.jcis.2021.03.150

    39. [39]

      Tang J Y, Guo R T, Zhou W G, Huang C Y, Pan W G. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2018,237:802-810. doi: 10.1016/j.apcatb.2018.06.042

    40. [40]

      Zhang M, Xie F X, Zhang L L, Jian X, Liu J X, Zhang X C, Wang Y W, Li R, Fan C M. Efficient oxygen evolution photocatalyst of BiOBr: In situ light-induced formation of surface oxygen vacancies and application in water splitting[J]. Mater. Lett., 2022,321132416. doi: 10.1016/j.matlet.2022.132416

    41. [41]

      Kong X Y, Lee W P C, Ong W J, Chai S P, Mohamed A R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels[J]. ChemCatChem, 2016,8(19):3074-3081. doi: 10.1002/cctc.201600782

    42. [42]

      Kong X Y, Ng B J, Tan K H, Chen X, Wang H, Mohamed A R, Chai S P. Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability[J]. Catal. Today, 2018,314:20-27. doi: 10.1016/j.cattod.2018.04.018

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(8)
  • Abstract views(959)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return