Electronic structures and magnetic properties of ZnO nanoribbons with armchair edges passivated by nitrogen under electric field and strains
- Corresponding author: Jun-Qing WEN, jqwen1221@xsyu.edu.cn
Citation:
Jun-Qing WEN, Fan YU, Qiu-Sheng SHI, Yang YANG, Hua WU, Xia FENG, Jian-Min ZHANG, Yu-Shun HAN. Electronic structures and magnetic properties of ZnO nanoribbons with armchair edges passivated by nitrogen under electric field and strains[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(2): 211-220.
doi:
10.11862/CJIC.2022.285
Tabassum S, Yamasue E, Okumura H, Ishihara K N. Electrical stability of Al- doped ZnO transparent electrode prepared by sol- gel method[J]. Appl. Surf. Sci., 2016,377:355-361. doi: 10.1016/j.apsusc.2016.03.133
QUAN W L, ZHANG J M, SHEN J H, LI L C, LI J J. Hierarchical ZnO: Architecture, morphological control and photocatalytic activity[J]. Chinese J. Inorg. Chem., 2015,31(8):1626-1636.
Khuili M, Fazouan N, Makarim H A, Halani G, Atmani E H. Compara- tive first principles study of ZnO doped with group Ⅲ elements[J]. J. Alloy. Compd., 2016,688:368-373.
WEN H, SHI C D, HU Y, RONG H R, SHA Y Y, LIU H J, ZHANG H P, LIU Q. Two dimensional coordination polymer derived nitrogen - doped carbon/ZnO nanocomposites as high performance anode material of lithium-Ion batteries[J]. Chinese J. Inorg. Chem., 2019,35(1):50-58.
Aravindh S A, Schwingenschloegl U, Roqan I S. Ferromagnetism in Gd doped ZnO nanowires: A first principles study[J]. J. Appl. Phys., 2014,116(23)233906. doi: 10.1063/1.4904860
Lin H, Lin C F, Zhuang D T, Li X X, Li J B. Low temperature prepara- tion of perpendicularly oriented ZnO nanosheet films and application to dye-sensitised solar cells[J]. Int. J. Mater. Prod. Technol., 2010,37(3/4):305-311. doi: 10.1504/IJMPT.2010.031430
Chen Y, Shao Y, Zhang X H, Jia C, Su Y, Li Q, Liu L Z, Guo T B. Heavily doped ZnO nanobelts and their violet emission[J]. J. Nanosci. Nanotechnol., 2011,11(2):1205-1209. doi: 10.1166/jnn.2011.3086
Wu L L, Gao Z G, Zhang E, Gao H, Li H, Zhang X. Synthesis and optical properties of N-In Co-doped ZnO nanobelts[J]. J. Lumin., 2010,130(2):334-340. doi: 10.1016/j.jlumin.2009.09.013
Zang C H, Su J F, Zhang D M, Zhang Y S. Photoluminescence of ZnO: Sb nanobelts fabricated by thermal evaporation method[J]. J. Lumin., 2011,131(8):1817-1811. doi: 10.1016/j.jlumin.2011.03.040
Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S. First - principles study of zinc oxide honeycomb structures[J]. Phys. Rev. B, 2009,80(23)235119. doi: 10.1103/PhysRevB.80.235119
Botello-Mendez A R, Martinez-Martinez M T, Lopez-Urias F, Terrones M, Terrones H. Metallic edges in zinc oxide nanoribbons[J]. Chem. Phys. Lett., 2007,448(4/5/6):258-263.
Kou L Z, Li C, Zhang Z H, Guo W L. Electric-field and hydrogen- passivation - induced band modulations in armchair ZnO nanorib-bons[J]. Phys. Chem. C, 2010,114(2):1326-1331. doi: 10.1021/jp909584j
Botello-Méndez A R, López-Ur F, Terrones M, Terrones H. Magnetic behavior in zinc oxide zigzag nanoribbons[J]. Nano lett., 2008,8(6):1562-1565. doi: 10.1021/nl072511q
Wu M H, Wu X, Zeng X C. Exploration of half metallicity in edge-modified graphene nanoribbons[J]. J. Phys. Chem. C, 2010,114(9):3937-3943. doi: 10.1021/jp100027w
Yang X, Dou X, Rouhanipous A, Zhi L, Räder H J, Mullen K. Two-dimensional graphene nanoribbons[J]. J. Am. Chem. Soc., 2008,130(13):4216-4217. doi: 10.1021/ja710234t
Johnson J L, Behnam A, Pearton S J, Ural A. Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks[J]. Adv. Mater., 2010,22(43):4877-4882. doi: 10.1002/adma.201001798
Shahrokhi M. Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains[J]. Optik, 2017,136:205-209. doi: 10.1016/j.ijleo.2017.02.033
Geim A K, Grigorieva I V. Van der waals heterostructures[J]. Nature, 2013,499(7459):419-424. doi: 10.1038/nature12385
Shahrokhi M. Quasi-particle energies and optical excitations of ZnS monolayer honeycomb structure[J]. Appl. Surf. Sci., 2016,390:377-382. doi: 10.1016/j.apsusc.2016.08.055
All Abbas J M, Narin P, Kutlu E, Lisesivdin S B, Ozbay E. Electronic properties of zigzag ZnO nanoribbons with hydrogen and magnesium passivation[J]. Physica B, 2019,556:12-17. doi: 10.1016/j.physb.2018.12.003
Tit N, Othman W, Shaheen A, Ali M. High selectivity of N- doped ZnO nano-ribbons in detecting H2, O2 and CO2 molecules: Effect of negative - differential resistance on gas - sensing[J]. Sens. Actuators B - Chem., 2018,270:167-172. doi: 10.1016/j.snb.2018.04.175
Shaheen A, Ali M, Othman W, Tit N. Origins of negative differential resistance in N-doped ZnO nanoribbons: Ab-initio investigation[J]. Sci. Rep., 2019,9:9914-9920. doi: 10.1038/s41598-019-46335-0
Shaheen A, Othman W, Ali M, Tit N. Catalyst-induced gas-sensing selectivity in ZnO nanoribbons: Ab - initio investigation at room temperature[J]. Appl. Surf. Sci., 2020,505144602. doi: 10.1016/j.apsusc.2019.144602
Paliwal A, Sharma A, Tomar M, Gupta V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films[J]. Sens. Actuators B-Chem., 2017,250:679-685. doi: 10.1016/j.snb.2017.05.064
Bhati V S, Ranwa S, Rajamani S, Kumari K. Improved sensitivity with low limit of detection of a hydrogen gas sensor based on GO- loaded Ni - doped ZnO nanostructures[J]. ACS Appl. Mater. Interfaces, 2018,10(13)11116. doi: 10.1021/acsami.7b17877
Wu M, Wu X, Pei Y, Zeng X C. Inorganic nanoribbons with unpas- sivated zigzag edges: Half metallicity and edge reconstruction[J]. Nano Res., 2011,4(2):233-239. doi: 10.1007/s12274-010-0074-9
Naderi S, Javaheri S, Shahrokhi M, Nia B A, Shahmoradi S. Optical properties of zigzag and armchair ZnO nanoribbons[J]. Physica E, 2020,124114218. doi: 10.1016/j.physe.2020.114218
Chen Q, Zhu L, Wang J. Edge-passivation induced half-metallicity of zigzag zinc oxide nanoribbons[J]. Appl. Phys. Lett., 2009,95(13)133116. doi: 10.1063/1.3238561
Kou L Z, Li C, Zhang Z H, Guo W. Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields[J]. ACS Nano, 2010,4(4):2124-2129. doi: 10.1021/nn901552b
Si H, Pan B C. Strain-induced semiconducting-metallic transition for ZnO zigzag nanoribbons[J]. J. Appl. Phys., 2010,107(9)094313. doi: 10.1063/1.3374684
Kilic M E, Erkoc S. Structural properties of defected ZnO nanorib- bons under uniaxial strain: Molecular dynamics simulations[J]. Curr. Appl. Phys., 2014,14(1):57-62. doi: 10.1016/j.cap.2013.10.009
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calcula- tions for metals and semiconductors using a plane - wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-21. doi: 10.1016/0927-0256(96)00008-0
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24)17953. doi: 10.1103/PhysRevB.50.17953
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561. doi: 10.1103/PhysRevB.47.558
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758
Kausar H, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A. DFT + U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review[J]. Results Phys., 2020,16102829. doi: 10.1016/j.rinp.2019.102829
Wen J Q, Han Y S, Yang X, Zhang J M. Computational research of electronic, optical and magnetic properties of Ce and Nd co-doped ZnO[J]. J. Phys. Chem. Solids, 2019,125:90-95. doi: 10.1016/j.jpcs.2018.10.014
Wen J Q, Lin P, Han Y S, Li N, Chen G X, Bai L H, Guo S L, Wu H, He W L, Zhang J M. Insights into enhanced ferromagnetic activity of P doping graphene-ZnO monolayer with point defects[J]. Mater. Chem. Phys., 2021,270124855. doi: 10.1016/j.matchemphys.2021.124855
HAN Y S. Study on magnetic control and mechanism of ZnO nanoribbons under electro mechanical coupling[J]. Xi'an: Xi'an Shiyou University, 2021:23-34.
Monkhorst H J, Pack J D. Special points for brillouin-zone integra- tions[J]. Phys. Rev. B, 1976,13(12):5188-5193. doi: 10.1103/PhysRevB.13.5188
Rashed H A, Umran N M. The stability and electronic properties of Si-doped ZnO nanosheet: A DFT study[J]. Mater. Res. Express, 2019,6045044. doi: 10.1088/2053-1591/aaf91e
Guo H Y, Zhao Y, Lu N, Kan E, Zeng X C, Wu X J, Yang J L. Tunable magnetism in a nonmetal-substituted ZnO monolayer: A first- principles study[J]. J. Phys. Chem. C, 2012,116:11336-11342. doi: 10.1021/jp2125069
Tan C, Sun D, Xu D, Tian X, Huang Y. Tuning electronic structure and optical properties of ZnO monolayer by Cd doping[J]. Ceram. Int., 2016,42:10997-11002. doi: 10.1016/j.ceramint.2016.03.238
Park Y K, Ahmad U, Lee E W, Hong D W, Hahn Y. Single ZnO nano- belt based field effect transistors (FETs)[J]. J. Nanosci. Nanotechnol., 2019,9(10):45-50.
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Gray atom is Zn atom, red atom is O atom and light black atom is N atom
Black dotted lines represent Fermi level
EX and EY represent the electric field applied in the X-axis and Y-axis directions
Fermi level was set to zero and is represented by a black vertical dotted line
Fermi level was set at zero and represented by a black dotted line
Fermi level was represented by black dotted line