Porous blade⁃like cobalt disulfide electrocatalyst boosting hydrazine⁃assistance energy⁃efficient hydrogen production
- Corresponding author: Qiang‐Qiang SUN, sqq3c118@163.com
Citation:
Qiang‐Qiang SUN, Peng‐Cheng ZHAO, Ruo‐Yu WU, Bao‐Yue CAO, Yi‐Meng WANG, Xue‐Mei FAN. Porous blade⁃like cobalt disulfide electrocatalyst boosting hydrazine⁃assistance energy⁃efficient hydrogen production[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(3): 422-432.
doi:
10.11862/CJIC.2022.284
Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectron-chemical water splitting[J]. Nat. Rev. Chem., 2017,1(1)0003. doi: 10.1038/s41570-016-0003
Reddy K P K, Rameez M, Wang T T, Wang K Y, Lin E Y R, Lin M C, Diau E W G, Hung C H, Chueh Y L, Pande K P, Lee P T. Screenprinted hole transport material-free perovskite solar cell for water splitting incorporating Cu-NiCo2O4 catalyst[J]. Mater. Lett., 2022,313131838. doi: 10.1016/j.matlet.2022.131838
Wang X Q, Wang B, Chen Y F, Wang M Y, Wu Q, Srinivas K, Yu B, Zhang X J, Ma F, Zhang W L. Fe2 P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting[J]. J. Mater. Sci. Technol., 2022,105:266-273. doi: 10.1016/j.jmst.2021.06.080
Chen S, Duan J J, Vasileff A, Qiao S Z. Size fractionation of twodimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion[J]. Angew. Chem. Int. Ed., 2016,55(11):3804-3808. doi: 10.1002/anie.201600387
Zhou L, Shao M F, Zhang C, Zhao J W, He S, Rao D M, Wei M G, Evans D, Duan X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation[J]. Adv. Mater., 2017,29(6)1604080. doi: 10.1002/adma.201604080
Asset T, Roy A, Sakamoto T, Padilla M, Matanovic I, Artyushkova K, Serov A, Maillard F, Chatenet M, Asazawa K, Tanaka H, Atanassov P. Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell[J]. Electrochim. Acta, 2016,215:420-426. doi: 10.1016/j.electacta.2016.08.106
Huang J F, Zhao S N, Chen W, Zhou Y, Yang X L, Zhu Y H, Li C Z. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation[J]. Nanoscale, 2016,8(11):5810-5814. doi: 10.1039/C5NR06512G
Yang J J, Xu L, Zhu W X, Xie M, Liao F, Cheng T, Kang Z H, Shao M W. Rh/RhOx nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions[J]. J. Mater. Chem. A, 2022,10(4):1891-1898. doi: 10.1039/D1TA09391F
Li Y P, Wang W T, Cheng M Y, Qian Q Z, Zhu Y, Zhang G Q. Environmentally benign general synthesis of nonconsecutive carbon-coated RuP2 porous microsheets as efficient bifunctional electrocatalysts under neutral conditions for energy-saving H2 production in hybrid water electrolysis[J]. Catal. Sci. Technol., 2022,12(13):4339-4349. doi: 10.1039/D2CY00055E
Pan J B, Wang B H, Wang J B, Ding H Z, Zhou W, Liu X, Zhang J R, Shen S, Guo J K, Chen L, Au C T, Jiang L L, Yin S F. Activity and stability boosting of an oxygen -vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation[J]. Angew. Chem. Int. Ed., 2021,60(3):1433-1440. doi: 10.1002/anie.202012550
Tang J, Gao B, Pan J B, Chen L, Zhao Z H, Shen S, Guo J K, Au C T, Yin S F. CdS nanorods anchored with CoS2 nanoparticles for enhanced photocatalytic hydrogen production[J]. Appl. Catal. A-Gen., 2019,588117281. doi: 10.1016/j.apcata.2019.117281
Pan J B, Liu X, Wang B H, Chen Y A, Tan H Y, Ouyang J, Zhou W, Shen S, Chen L, Au C T, Yin S F. Conductive MOFs coating on hematite photoanode for activity boost via surface state regulation[J]. Appl. Catal. B-Environ., 2022,315121526. doi: 10.1016/j.apcatb.2022.121526
Pan J B, Shen S, Chen L, Au C T, Yin S F. Core-shell photoanodes for photoelectrochemical water oxidation[J]. Adv. Funct. Mater., 2021,31(36)2104269. doi: 10.1002/adfm.202104269
Chen S, Wang C L, Liu S, Huang M X, Lu J, Xu P P, Tong H G, Hu L, Chen Q W. Boosting hydrazine oxidation reaction on CoP/Co MottSchottky electrocatalyst through engineering active sites[J]. J. Phys. Chem. Lett., 2021,12(20):4849-4856. doi: 10.1021/acs.jpclett.1c00963
Jafarian M, Rostami T, Mahjani M G, Gobal F. A low cost and highly active non-noble alloy electrocatalyst for hydrazine oxidation based on nickel ternary alloy at the surface of graphite electrode[J]. J. Electroanal. Chem., 2016,763:134-140. doi: 10.1016/j.jelechem.2015.12.031
Feng Z B, Gao B, Wang L, Zhang H, Lu P, Xing P F. Nanoporous cobalt-selenide as high-performance bifunctional electrocatalyst towards oxygen evolution and hydrazine oxidation[J]. J. Electrochem. Soc., 2020,167(13)134501. doi: 10.1149/1945-7111/abb4ad
Kim J Y, Han S, Bang J H. Cobalt disulfide nano-pine-tree array as a platinum alternative electrocatalyst for hydrogen evolution reaction[J]. Mater. Lett., 2017,189:97-100. doi: 10.1016/j.matlet.2016.11.080
Ma X, Wang J M, Liu D N, Kong R M, Hao S, Du G, Asiri A M, Sun X P. Hydrazine-assisted electrolytic hydrogen production: CoS2 nanoarray as a superior bifunctional electrocatalyst[J]. New J. Chem., 2017,41(12):4754-4757. doi: 10.1039/C7NJ00326A
Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F, Wang D Y, Yang J, Pennycook S J, Hwang B J, Dai H J. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis[J]. Nat. Commun., 2014,54695. doi: 10.1038/ncomms5695
Sun Q Q, Wang L Y, Shen Y Q, Zhou M, Ma Y, Wang Z L, Zhao C. Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction[J]. ACS Sustain. Chem. Eng., 2018,6(10):12746-12754. doi: 10.1021/acssuschemeng.8b01887
Sun Q Q, Dong Y J, Wang Z L, Yin S W, Zhao C. Synergistic nanotubular copper-doped nickel catalysts for hydrogen evolution reactions[J]. Small, 2018,14(14)1704137. doi: 10.1002/smll.201704137
SUN Q Q, ZHOU C S, ZHANG G C, WANG Z L. Synthesis of porous dendritic nickel-copper alloy and the electroctalytic performances towards hydrogen evolution and hydrazine oxidation[J]. Chinese J. Inorg. Chem., 2020,36(4):703-714.
Huang J L, Hou D M, Zhou Y C, Zhou W J, Li G Q, Tang Z H, Li L G, Chen S W. MoS2 nanosheet -coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2015,3(45):22886-22891. doi: 10.1039/C5TA07234D
Zhu L, Susac D, Teo M, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A. Investigation of CoS2 -based thin films as model catalysts for the oxygen reduction reaction[J]. J. Catal., 2008,258(1):235-242. doi: 10.1016/j.jcat.2008.06.016
Sun Y J, Liu C, Grauer D C, Yano J, Long J R, Yang P, Chang C J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water[J]. J. Am. Chem. Soc., 2013,135(47):17699-17702. doi: 10.1021/ja4094764
López M C, Ortiz G F, Lavela P, Alcántara R, Tirado J L. Improved energy storage solution based on hybrid oxide materials[J]. ACS Sustain. Chem. Eng., 2013,1(1):46-56. doi: 10.1021/sc300096s
Jing C, Jing X, Wang J M, Zhang L Y, Zhou H, Zhong Y, Chen D, Fan H Q, Shao H B, Zhang J Q, Cao C N. Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2013,38(2):934-941. doi: 10.1016/j.ijhydene.2012.10.084
Wang J M, Ma X, Liu T T, Liu D N, Hao S, Du G, Kong R M, Asiri A M, Sun X P. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energyefficient hydrogen production[J]. Mater. Today Energy, 2017,3:9-14. doi: 10.1016/j.mtener.2017.02.002
Liu M, Zhang R, Zhang L X, Liu D N, Hao S, Du G, Asiri A M, Kong R M, Sun X P. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction[J]. Inorg. Chem. Front., 2017,4(3):420-423. doi: 10.1039/C6QI00384B
Ha T, Do H H, Lee H, Ha N N, Ha N T T, Ahn S H, Oh Y, Kim S Y, Kim M G. A GO/CoMo3S13 chalcogel heterostructure with rich catalytic Mo-S-Co bridge sites for the hydrogen evolution reaction[J]. Nanoscale, 2022,14(26):9331-9340. doi: 10.1039/D2NR01800D
Tang C Y, Wang W, Sun A, Qi C, Zhang D, Wu Z, Wang D. Sulfurdecorated molybdenum carbide catalysts for enhanced hydrogen evolution[J]. ACS Catal., 2015,5(11):6956-6963. doi: 10.1021/acscatal.5b01803
Wang L Y, Li Y B, Sun Q Q, Qiang Q, Shen Y Q, Ma Y, Wang Z L, Zhao C. Ultralow FeⅢ ion doping triggered generation of Ni3S2 ultrathin nanosheet for enhanced oxygen evolution reaction[J]. ChemCatChem, 2019,11(7):2011-2016. doi: 10.1002/cctc.201801959
Suryanto B H R, Wang Y, Hocking R K, Adamson W, Zhao C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide[J]. Nat. Commun., 2019,105599. doi: 10.1038/s41467-019-13415-8
Sun T T, Zhang C W, Chen J F, Yan Y S, Zakhidov A A, Baughman R H, Xu L B. Three-dimensionally ordered macro-/mesoporous Ni as a highly efficient electrocatalyst for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2015,3(21):11367-11375. doi: 10.1039/C5TA01383F
Kornienko N, Resasco J, Becknell N, Jiang C M, Liu Y S, Nie K Q, Sun X H, Guo J H, Leone S R, Yang P D. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst[J]. J. Am. Chem. Soc., 2015,137(23):7448-7455. doi: 10.1021/jacs.5b03545
Devasenathipathy R, Mani V, Chen S M, Arulraj D, Vasantha V S. Highly stable and sensitive amperometric sensor for the determination of trace level hydrazine at cross linked pectin stabilized gold nanoparticles decorated graphene nanosheets[J]. Electrochim. Acta, 2014,135:260-269. doi: 10.1016/j.electacta.2014.05.002
Cazetta A L, Zhang T, Silva T L, Almeida V C, Asefa T. Bone charderived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation[J]. Appl. Catal. B-Environ., 2018,225:30-39. doi: 10.1016/j.apcatb.2017.11.050
Devasenathipathy R, Mani V, Chen S M. Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode[J]. Talanta, 2014,124:43-51. doi: 10.1016/j.talanta.2014.02.031
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
Inset: the corresponding element contents
(a) Co2p, (b) S2p, (c) Ni2p, and (d) O1s