Citation: Kai-Xuan XU, Yu-Long KANG, Hong-Bin HE, Xiao-Ming GAO, Chen-Yu ZHAO, Rui-Yang REN. Nitrogen-vacancies g-C3N5 modified S-doping perylene diimide for the enhanced visible photo self-Fenton reaction for phenol oxidation coupled with Cr(Ⅵ) reduction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 32-44. doi: 10.11862/CJIC.2022.264 shu

Nitrogen-vacancies g-C3N5 modified S-doping perylene diimide for the enhanced visible photo self-Fenton reaction for phenol oxidation coupled with Cr(Ⅵ) reduction

  • Corresponding author: Xiao-Ming GAO, ydgaoxm@126.com
  • Received Date: 31 May 2022
    Revised Date: 5 October 2022

Figures(11)

  • Nitrogen-vacancies g-C3N5 (NVs) modified S-doping perylene diimide (S-PDI) organic compound semiconductor was prepared by electrostatic self-assembly. The nitrogen vacancies provided rich active sites on the surface of g-C3N5. The amide in the preparation of S-PDI enhanced the intermolecular interaction between S-PDI and NVs. The reduction rate of Cr(Ⅵ) over 30% NVs/S-PDI (with NVs mass fraction of 30%) was 79.96%, and the degradation rate of phenol was 74.40%. Furthermore, In the process of synergistic oxidation of phenol and reduction of Cr(Ⅵ) over 30% NVs/S-PDI, the reduction rate of Cr(Ⅵ) was 92.83%, and the degradation rate of phenol was 93.89%. Carboxylic acid and propanol, the products of oxidative degradation of phenol could be used as sacrificial agents of Cr(Ⅵ), which promoted the reduction of Cr(Ⅵ). The reduction of Cr(Ⅵ) enhanced the oxidative degradation of phenol. Accordingly, the carboxylic acid and propanol were finally oxidized to CO2 and H2O. Using the reduction performance of the conduction band and the oxidation performance of the valence band, the spatial separation of electrons and holes could be achieved by constructing heterojunction NVs/S-PDI, which could synergistically strengthen the oxidation half-reaction and reduction half-reaction in the photocatalytic process, simultaneously improve the photocatalytic oxidation-reduction performance. At the same time, under the illumination of visible light, H2O2 and Cr(Ⅵ)were generated in the phenol aqueous solution. A photo self-Fenton reaction process was formed by the electrons, H2O2 and Cr(Ⅵ), which further promoted the oxidative degradation of phenol and the reduction and removal of Cr(Ⅵ).
  • 加载中
    1. [1]

      Liang L, Shi L, Wang F X, Wang H H, Yan P Q, Cong Y F, Yao L Z, Yang Z X, Qi W. g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy[J]. Appl. Catal. A-Gen., 2020,599117618. doi: 10.1016/j.apcata.2020.117618

    2. [2]

      Kong L R, Mu X J, Fan X M, Li R, Zhang Y T, Song P, Ma F C, Sun M T. Site-selected N-vacancy of g-C3N4 for photocatalysis and physical mechanism[J]. Appl. Mater. Today, 2018,13:329-338. doi: 10.1016/j.apmt.2018.10.003

    3. [3]

      Ei Fakir A A, Anfar Z, Amedlous A, Zbair M, Hafidi Z, Ei Achouri M, Jada A, Ei Alem N. Engineering of new hydrogel beads based conducting polymers: Metal-free catalysis for highly organic pollutants degradation[J]. Appl. Catal. B-Environ., 2021,286119948. doi: 10.1016/j.apcatb.2021.119948

    4. [4]

      Ragab E, Shaban M, Khalek A A, Mohamed F. Design and characterization of PANI/starch/Fe2O3 BiO composite for wastewater remediation[J]. Int. J. Biol. Macromol., 2021,181:301-312. doi: 10.1016/j.ijbiomac.2021.03.043

    5. [5]

      Gao X M, Gao K L, Li X B, Shang Y Y, Fu F. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants[J]. Catal. Sci. Technol., 2020,10(2):372-381. doi: 10.1039/C9CY01722D

    6. [6]

      Gong Y B, Chang K, Chen C, Han M M, Zhan X J, Min J, Jiao X C, Li Q Q, Li Z. Pyrene-fused PDI based ternary solar cells: High power conversion efficiency over 10%, and improved device thermal stability[J]. Mater. Chem. Front., 2019,3(1):93-102. doi: 10.1039/C8QM00486B

    7. [7]

      Cai Z Q, Huang Y N, Ji H D, Liu W, Fu J, Sun X B. Type-Ⅱ surface heterojunction of bismuth-rich Bi4O 5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics[J]. Sep. Purif. Technol., 2022,280119772. doi: 10.1016/j.seppur.2021.119772

    8. [8]

      Vadivel S, Hariganesh S, Paul B, Rajendran S, Habibi-Yangjeh A, Maruthamani D, Kumaravel M. Synthesis of novel AgCl loaded g-C3N5 with ultrahigh activity as visible light photocatalyst for pollutants degradation[J]. Chem. Phys. Lett., 2020,738136862. doi: 10.1016/j.cplett.2019.136862

    9. [9]

      Saravanakumar K, Maheskumar V, Yea Y, Yoon Y, Muthuraj V, Park C M. 2D/2D nitrogen-rich graphitic carbon nitride coupled Bi2WO6 S-scheme heterojunction for boosting photodegradation of tetracycline: Influencing factors, intermediates, and insights into the mechanism[J]. Compos. Part B-Eng., 2022,234109726. doi: 10.1016/j.compositesb.2022.109726

    10. [10]

      Zhang Z J, Chen X J, Zhang H J, Liu W X, Zhu W, Zhu Y F. A highly crystalline perylene imide polymer with the robust built-in electric field for efficient photocatalytic water oxidation[J]. Adv. Mater., 2020,32(32)1907746. doi: 10.1002/adma.201907746

    11. [11]

      Usta H, Facchetti A, Marks T. n-Channel semiconductor materials design for organic complementary circuits[J]. Acc. Chem. Res., 2011,44:501-510. doi: 10.1021/ar200006r

    12. [12]

      Wang R, Wu J, Mao X, Wang J M, Liu Q Z, Qi Y F, He P, Qi X M, Liu G L, Guan Y. Bi spheres decorated g-C3N4/BiOI Z-scheme het-erojunction with SPR effect for efficient photocatalytic removal elemental mercury[J]. Appl. Surf. Sci., 2021,556149804. doi: 10.1016/j.apsusc.2021.149804

    13. [13]

      Li M X, Lu Q J, Liu M L, Yin P, Wu C Y, Li H T., Zhang Y Y, Yao S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N 5/BiOBr for the photoelectro-chemical nitrogen reduction[J]. ACS Appl. Mater. Interfaces, 2020,12(34):38266-38274. doi: 10.1021/acsami.0c11894

    14. [14]

      Luo J, Fan C Z, Tang L, Liu Y N, Gong Z X, Wu T S, Zhen X L, Feng C Y, Feng H P, Wang L L, Xu L, Yan M. Reveal Brønsted-Evans-Polanyi relation and attack mechanisms of reactive oxygen species for photocatalytic H2O2 production[J]. Appl. Catal. B-Environ., 2022,301120757. doi: 10.1016/j.apcatb.2021.120757

    15. [15]

      Li H Y, Wang C, Bai X J, Wang X Y, Sun B X, Li D, Zhao L C, Zong R L, Hao D. In-plane polarization induced by the hydrogen bonding and π-π stacking of functionalized PDI supramolecules for the efficient photocatalytic degradation of organic pollutants[J]. Mater. Chem. Front., 2020,4(9):2673-2687. doi: 10.1039/D0QM00349B

    16. [16]

      Hu C, Lin Y H, Yoshida M, Ashimura S. Influence of phosphorus doping on triazole-based g-C3N5 nanosheets for enhanced photoelec-trochemical and photocatalytic performance[J]. ACS Appl. Mater. Interfaces, 2021,13(21):24907-24915. doi: 10.1021/acsami.1c05162

    17. [17]

      Wang L B, Li M H, Zhang Q, Li F Y, Xu L. Constructing electron transfer pathways and active centers over W18O49 nanowires by doping Fe3+ and incorporating g-C3N5 for enhanced photocatalytic nitro-gen fixation[J]. Inorg. Chem. Front., 2021,8(14):3566-3575. doi: 10.1039/D1QI00503K

    18. [18]

      Zhang Y Z, Shi J W, Huang Z X, Guan X J, Zong S C, Cheng C, Zheng B T, Guo L J. Synchronous construction of CoS 2 in-situ load-ing and doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight[J]. Chem. Eng. J., 2020,401126135. doi: 10.1016/j.cej.2020.126135

    19. [19]

      LI X B, LIU J Y, HUANG J T, HE C Z, FENG Z J, CHEN Z, WAN L Y, DENG F. All organic S-scheme heterojunction PDI/S-g-C3N4 photocatalyst with enhanced photocatalytic performance[J]. Acta Phys.-Chim. Sin., 2021,37(6)2010030.  

    20. [20]

      Jiang R R, Lu G H, Nkoom M, Yan Z H, Wu D H, Liu J C, Dang T J. Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS 4/BiOCl Z-scheme system: Simultaneously improved visible-light absorption and charge transfer efficiency[J]. Chem. Eng. J., 2020,400125913. doi: 10.1016/j.cej.2020.125913

    21. [21]

      Li K, Cai W, Zhang Z C, Xie H F, Zhong Q, Qu H X. Boron doped C3N5 for photocatalytic nitrogen fixation to ammonia: The key role of boron in nitrogen activation and mechanism[J]. Chem. Eng. J., 2022,435135017. doi: 10.1016/j.cej.2022.135017

    22. [22]

      Al-Hamdi A M, Sillanpää M, Bora T, Dutta J. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2: Sb nanoparticles[J]. Appl. Surf. Sci., 2016,370:229-236. doi: 10.1016/j.apsusc.2016.02.123

    23. [23]

      Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfide Sm 2Ti2S 2O 5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤650 nm)[J]. J. Am. Chem. Soc., 2002,124:13547-13553. doi: 10.1021/ja0269643

    24. [24]

      Zhang H X, Nengzi L C, Wang Z J, Zhang X Y, Li B, Cheng X W. Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight[J]. J. Hazard. Mater., 2020,383121236. doi: 10.1016/j.jhazmat.2019.121236

  • 加载中
    1. [1]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(25)
  • Abstract views(1505)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return