Citation: Hui SU, Bai-Rui LUAN, Chun-Yan LI. Formation mechanism of Ni deposited superhydrophobic film on SiC surface[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 13-22. doi: 10.11862/CJIC.2022.259 shu

Formation mechanism of Ni deposited superhydrophobic film on SiC surface

  • Corresponding author: Chun-Yan LI, 88549828@qq.com
  • Received Date: 27 April 2022
    Revised Date: 21 September 2022

Figures(10)

  • The modified SiC particles prepared in the early stage with an environmentally benign method would be changed from hydrophilic to superhydrophobic with a contact angle of 156° after storing for a long time. To explain this new phenomenon, we tested and analyzed original, modified, and previously prepared materials of SiC powder with scanning electron microscope, energy spectrum, (high-resolution) transmission electron microscope, and X-ray photoelectron spectroscopy (XPS). The results showed that after being stored for a long time, the cell-like particles on the surface of SiC particles increased, and the bulges appeared to increase the roughness, which was similar to the micro-nano structures on the surface of lotus leaves. The main components of the modified particles were Ni, Si, and O, and the contents of Ni and O in the bulge were significantly higher than those in the depression. There was a clear film on the surface of Ni particles with a thickness of 2-3 nm, but their crystallinity was relatively low. The XPS test results showed that the characteristic peak of metallic nickel moves forward by nearly 4 eV, which is consistent with the characteristic peak of the nickel oxidation state. Small changes of morphology on particle surface are explained, which in turn explains the mechanism of spontaneous formation of the superhydrophobic film.
  • 加载中
    1. [1]

      XU G L, DENG L L, PI P H, ZHENG D F, WEN X F, YANG Z R. Preparation of superhydrophobic silica films by sol-gel method and its wettability[J]. Chinese J. Inorg. Chem., 2010,26(10):1810-1814.  

    2. [2]

      Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings[J]. J. Mater. Chem., 2011,21(41):16304-16322. doi: 10.1039/c1jm12523k

    3. [3]

      Razavi S M R, Masoomi M, Bagheri R. Facile strategy toward develop-ing a scalable, environmental friendly and self-cleaning superhydro-phobic surface[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2018,541:108-116. doi: 10.1016/j.colsurfa.2018.01.038

    4. [4]

      Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on antimicrobial properties[J]. Colloid Surf. B-Biointerfaces, 2010,79(1):5-18. doi: 10.1016/j.colsurfb.2010.03.029

    5. [5]

      Watson G S, Green D W, Schwarzkopf L, Li X, Cribb B W, Myhra S, Watson J A. A gecko skin micro/nano structure—A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface[J]. Acta Biomater., 2015,21(7):109-122.

    6. [6]

      Boinovich L B, Emelyanenko A M. Anti-icing potential of superhydro-phobic coatings[J]. Mendeleev Commun., 2013,23(1):3-10. doi: 10.1016/j.mencom.2013.01.002

    7. [7]

      Zhang Q L, He M, Chen J, Wang J J, Song Y L, Jiang L. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets[J]. Chem. Commun., 2013,49(40):4516-4518. doi: 10.1039/c3cc40592c

    8. [8]

      Wang L, Gong Q H, Zhan S H, Jiang L, Zheng Y M. Robust anti-icing performance of a flexible superhydrophobic surface[J]. Adv. Mater., 2016,28(35):7729-7735. doi: 10.1002/adma.201602480

    9. [9]

      Sun Z Q, Liao T, Liu K S, Jiang L, Kim J H, Dou S X. Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures[J]. Small, 2014,10(15):3001-3006. doi: 10.1002/smll.201400516

    10. [10]

      Yuan R, Wu S, Yu P, Wang B, Mu L, Zhang X, Zhu Y, Wang B, Wang H, Zhu J. Superamphiphobic and electroactive nanocomposite toward self-cleaning, antiwear, and anticorrosion coatings[J]. ACS Appl. Mater. Interfaces, 2016,8(19):12481-12493. doi: 10.1021/acsami.6b03961

    11. [11]

      Li J, Shi L, Chen Y, Zhang Y B, Guo Z G, Su B L, Liu W M. Stable superhydrophobic coatings from thiol-ligandnanocrystals and their application in oil/water separation[J]. J. Mater. Chem., 2012,22(19):9774-9781. doi: 10.1039/c2jm30931a

    12. [12]

      Hwang G B, Patir A, Page K, Lu Y, Allan E, Parkin L P. Buoyancy increase and drag-reduction through a simple superhydrophobic coating[J]. Nanoscale, 2017,9(22):7588-7594. doi: 10.1039/C7NR00950J

    13. [13]

      Yan K K, Jiao L, Lin S S, Ji X S, Lu Y, Zhang L. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes net-work for membrane distillation[J]. Desalination, 2018,437:26-33. doi: 10.1016/j.desal.2018.02.020

    14. [14]

      Asmatulu R, Ceylan M, Nuraje N. Study of superhydrophobic elec-trospun nano composite fibers for energy systems[J]. Langmuir, 2011,27(2):504-507. doi: 10.1021/la103661c

    15. [15]

      Gustafsson L, Jansson R, Hedhammar M, van der Wijngaart W. Structuring of functional spider silk wires, coatings, and sheets by self-assembly on superhydrophobic pillar surfaces[J]. Adv. Mater., 2018,30(3)1704325. doi: 10.1002/adma.201704325

    16. [16]

      Kothary P, Dou X, Fang Y, Gu Z X, Leo S Y, Jiang P. Superhydro-phobic hierarchical arrays fabricated by a scalable colloidal lithography approach[J]. J. Colloid Interf. Sci., 2017,487:484-492. doi: 10.1016/j.jcis.2016.10.081

    17. [17]

      Shiu J Y, Kuo C W, Chen P, Mou C Y. Fabrication of tunable super-hydrophobic surfaces by nanosphere lithography[J]. Chem. Mater., 2004,16(4):561-564. doi: 10.1021/cm034696h

    18. [18]

      Conti J, De Coninck J, Ghazzal M N. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface[J]. Appl. Surf. Sci., 2018,436:234-241. doi: 10.1016/j.apsusc.2017.12.017

    19. [19]

      Gray Munro J, Campbell J. Mimicking the hierarchical surface topog-raphy and superhydrophobicity of the lotus leaf on magnesium alloy AZ31[J]. Mater. Lett., 2017,189:271-274. doi: 10.1016/j.matlet.2016.11.102

    20. [20]

      Yang S Y, Chen S, Tian Y, Feng C, Chen L. Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process[J]. Chem. Mater., 2008,20(4):1233-1235. doi: 10.1021/cm703220r

    21. [21]

      Wu X H, Fu Q T, Kumar D, Ho J W C, Kanhere P, Zhou H F, Chen Z. Mechanically robust superhydrophobic and supe-roleophobic coatings derived by sol-gel method[J]. Mater. Des., 2016,89:1302-1309. doi: 10.1016/j.matdes.2015.10.053

    22. [22]

      Sahoo R K, Das A, Singh S K, Mishra B K. Synthesis of surface modified SiC superhydrophobic coating on stainless steel surface by thermal plasma evaporation method[J]. Surf. Coat. Technol., 2016,307:476-483. doi: 10.1016/j.surfcoat.2016.09.027

    23. [23]

      Toro R G, Calandra P, Cortese B, Caro T, Brucale M, Mezzi A, Federici F, Caschera D. Argon and hydrogen plasma influence on the protective properties of diamond-like carbon films as barrier coating[J]. Surf. Interfaces, 2017,6:60-71. doi: 10.1016/j.surfin.2016.11.009

    24. [24]

      Dimitrakellis P, Gogolides E. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review[J]. Adv. Colloid Interface Sci., 2018,254:1-21. doi: 10.1016/j.cis.2018.03.009

    25. [25]

      Sui J, Zhang Y J, Ren S F, Rinke M, Lu J J, Jia J H. Carbon coating with combined superhydrophobic and self-lubricating properties on titanium silicon carbide[J]. Carbon, 2009,47(3):629-634. doi: 10.1016/j.carbon.2008.10.050

    26. [26]

      Zhao Z Q, Wang H Y, Liu Z J, Zhang X Y, Zhang W B, Chen X X, Zhu Y J. Durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating with uniquely weathering stability, anti-corrosion and wear-resistance[J]. Prog. Org. Coat., 2019,127:16-26. doi: 10.1016/j.porgcoat.2018.11.006

    27. [27]

      Tu K K, Wang X Q, Kong L Z, Guan H. Facile Preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood[J]. Mater. Des., 2018,140:30-36. doi: 10.1016/j.matdes.2017.11.029

    28. [28]

      ZHANG Y, ZHANG Q, ZHANG R Y, LIU S Z, FAN L Y, ZHOU Y C. Preparation of superhydrophobic composites sponge and its appli-cation in oil-water separation[J]. J. Inorg. Mater., 2020,35(4):475-481.  

    29. [29]

      Seyed M R R, Neisiany R E, Marjani A. A chemically durable super-hydrophobic aluminum surface coated with silicon carbide nanoparticles and perfluoro acrylic copolymer[J]. Theor. Appl. Fract. Mech., 2018,94:181-185. doi: 10.1016/j.tafmec.2018.02.001

    30. [30]

      Zhi D F, Lu Y, Sathasivam S, Parkin L P, Zhang X. Large-scale fab-rication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance[J]. J. Mater. Chem. A, 2017,5(21):10622-10631. doi: 10.1039/C7TA02488F

    31. [31]

      SU H, CAO M S, WANG Z P, ZOU G Z. Surface decoration and characterizations on silicon carbide particles based on electroless plating[J]. J. Mater. Eng., 2005(2):37-40.  

    32. [32]

      QIANG J, JIANG B Y, DONG Y Z, WENG C. Effects of cobalt content on replication quality for micro/nano-structural morphology of electroformed nickel cobalt alloy mold insert[J]. China Surf. Eng., 2018,31(5):118-124.  

    33. [33]

      Li L B, An M Z, Wu G H. A new electroless nickel deposition tech-nique to metallise SiCp/Al composites[J]. Surf. Coat. Technol., 2006,200(16/17):5102-5112.

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    3. [3]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    15. [15]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    18. [18]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(10)
  • Abstract views(2901)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return