Citation: Ming-Zhen CHEN, Jin-Xiang CHEN, Ruo-Lun WANG, Jun-Xiong LU, Xue-Fei XU. Synthesis, Crystal Structures and DNA Interaction of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Complexes Derived from Zwitterionic Carboxylate Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(12): 2499-2510. doi: 10.11862/CJIC.2022.241 shu

Synthesis, Crystal Structures and DNA Interaction of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Complexes Derived from Zwitterionic Carboxylate Ligand

  • Corresponding author: Xue-Fei XU, xuxuefei0731@163.com
  • Received Date: 19 May 2022
    Revised Date: 4 September 2022

Figures(10)

  • Four new metal complexes, namely [Cu2(Cbiq)4(H2O)2]Br4·2H2O (1), [Zn(Cbiq)2(H2O)2]Br2·Cbiq·H2O (2), and [M3(Cbiq)8(μ-OH)2(H2O)2](ClO4)4·7H2O (M=Co (3), Mn (4)), were synthesized from the zwitterionic carboxylate ligand N-(4-carboxybenzyl)isoquinolinium bromide ((HCbiq)Br) with the corresponding metal salts. All these metal complexes were characterized by single crystal X-ray diffraction, elemental analyses, and IR. In complex 1, the centrosymmetric binuclear Cu(Ⅱ) are bridged by four Cbiq molecules and each Cu(Ⅱ) ion is further coordinated to one water molecule. In complex 2, the center Zn(Ⅱ) ion is coordinated to two unidentate Cbiq molecules and two water molecules. Complexes 3 and 4 have similar structures in which every two M(Ⅱ) ions are bridged by two Cbiq molecules and one hydroxo-O atom and the two peripheric M(Ⅱ) ions are further coordinated to two unidentate Cbiq molecules and one water molecule. Agarose gel electrophoresis (GE) studies on the cleavage of plasmid pBR322 DNA by complexes 1-4 indicated that complex 1 was capable of efficiently cleaving DNA under physiological conditions, most probably via an oxidative mechanism. Kinetic assay of complex 1 afforded the maximal catalytic rate constant kmax of 2.80 h-1 and Michaelis constant KM of 3.22 mmol·L-1. Ethidium bromide (EB) displacement experiments indicated that complex 1 exhibited high DNA binding affinity toward calf-thymus (CT) DNA. The docking method was used to predict the CT DNA binding affinity of complex 1, with the result that the binding free energy was -49.87 kJ·mol-1.
  • 加载中
    1. [1]

      Waseem D, Butt A F, Haq I U, Bhatti M H, Khan G M. Carboxylate Derivatives of Tributyltin (Ⅳ) Complexes as Anticancer and Antileishmanial Agents[J]. DARU, 2017,25(1)8. doi: 10.1186/s40199-017-0174-0

    2. [2]

      Fudulu A, Olar R, Maxim C, Scăeţeanu G V, Bleotu C, Matei L, Chifiriuc M C, Badea M. New Cobalt (Ⅱ) Complexes with Imidazole Derivatives: Antimicrobial Efficiency against Planktonic and Adherent Microbes and In Vitro Cytotoxicity Features[J]. Molecules, 2020,26(1)55. doi: 10.3390/molecules26010055

    3. [3]

      Sirajuddin M, Ali S, Mckee V, Matin A. Synthesis, Characterization and Biological Screenings of 5-Coordinated Organotin (Ⅳ) Complexes Based on Carboxylate Ligand[J]. J. Mol. Struct., 2020,1206127683. doi: 10.1016/j.molstruc.2020.127683

    4. [4]

      Begum R, Rehman M U, Shahid K, Haider A, Iqbal M, Tahir M N, Ali S. Synthesis, Structural Elucidation, DNA-Binding and Biological Activity of Nickel (Ⅱ) Mixed Ligand Carboxylate Complexes[J]. J. Mol. Struct., 2021,1242130801. doi: 10.1016/j.molstruc.2021.130801

    5. [5]

      Bhattacharjee M, Boruah S R, Purkayastha R, Ganguly R, Nath P. Synthesis, Characterization, DNA Binding Ability, In Vitro Cytotoxicity, Electrochemical Properties and Theoretical Studies of Copper (Ⅱ) Carboxylate Complexes[J]. Inorg. Chim. Acta, 2021,518120235. doi: 10.1016/j.ica.2020.120235

    6. [6]

      Zhao H Q, Yang S P, Ding N N, Qin L, Qiu G H, Chen J X, Zhang W H, Chen W H, Hor T S A. A Zwitterionic 1D/2D Polymer Co-crystal and Its Polymorphic Sub-components: A Highly Selective Sensing Platform for HIV ds-DNA Sequences[J]. Dalton Trans., 2016,45(12):5092-5100. doi: 10.1039/C5DT04410C

    7. [7]

      Qin L, Lin L X, Fang Z P, Yang S P, Qiu G H, Chen J X, Chen W H. A Water-Stable Metal-Organic Framework of a Zwitterionic Carboxylate with Dysprosium: A Sensing Platform for Ebolavirus RNA Sequences[J]. Chem. Commun., 2016,5(1):132-135.

    8. [8]

      An W, Aulakh D, Zhang X, Verdegaal W, Dunbar K R, Wriedt M. Switching of Adsorption Properties in a Zwitterionic Metal-Organic Framework Triggered by Photogenerated Radical Triplets[J]. Chem. Mater., 2016,28(21):7825-7832. doi: 10.1021/acs.chemmater.6b03224

    9. [9]

      Wang K M, Tang H J, Zhang D H, Ma Y L, Wang Y N. Selective and Recyclable Sensing of Aqueous Phase 2, 4, 6-Trinitrophenol (TNP) Based on Cd (Ⅱ) Coordination Polymer with Zwitterionic Ligand[J]. Crystals, 2018,8(12)456. doi: 10.3390/cryst8120456

    10. [10]

      Ma Y L, Du L, Zhao Q H. Synthesis, Crystal Structure, Luminescent and Magnetic Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Polycarboxylate Ligand[J]. Inorg. Chem. Commun., 2017,77:1-5. doi: 10.1016/j.inoche.2017.01.027

    11. [11]

      Devi C S, Thulasiram B, Aerva R R, Nagababu P. Recent Advances in Copper Intercalators as Anticancer Agents[J]. J. Fluoresc., 2018,28(5):1195-1205. doi: 10.1007/s10895-018-2283-7

    12. [12]

      Elif E Ş, Topkaya C G, Göktürk T, Gup R. Synthesis and Characterization of Copper (Ⅱ) Complexes with Aroylhydrazone Ligands Containing Quaternary Ammonium Salts: In Vitro DNA Binding and Nuclease Activity[J]. Chinese J. Inorg. Chem., 2020,36(7):1333-1343.  

    13. [13]

      Chen M, Tang X Y, Chen M Z, Chen J X, Chen W H. Lanthanide-Based Polymers with Charged Ligand Backbones: Triple-Stranded Chain Structures and Their DNA Cleavage Studies[J]. Aust. J. Chem., 2015,68(3):493-499. doi: 10.1071/CH14025

    14. [14]

      Chen J X, Lin W E, Chen M Z, Zhou C Q, Lin Y L, Chen M, Jiang Z H, Chen W H. Synthesis, Characterization and Potent DNA-Cleaving Activity of Copper (Ⅱ)-Complexed Berberine Carboxylate[J]. Bioorg. Med. Chem. Lett., 2012,22(23):7056-7059. doi: 10.1016/j.bmcl.2012.09.087

    15. [15]

      Chen J X, Lin W E, Zhou C Q, Yau L F, Wang J R, Wang B, Chen W H, Jiang Z H. Synthesis, Crystal Structures and Biological Evaluation of Water-Soluble Zinc Complexes of Zwitterionic Carboxylates[J]. Inorg. Chim. Acta, 2011,376(1):389-395. doi: 10.1016/j.ica.2011.06.054

    16. [16]

      Chen J X, Lin W E, Chen M, Que F C, Tao L, Cen X L, Zhou Y M, Chen W H. Synthesis and DNA Photocleaving Activities of Ancillary Ligand-Containing Zinc Complexes of Quaternized Carboxylates[J]. Inorg. Chim. Acta, 2014,409:195-201. doi: 10.1016/j.ica.2013.09.033

    17. [17]

      Deo K M, Pages B J, Ang D L, Gordon C P, Aldrich-Wright J R. Transition Metal Intercalators as Anticancer Agents-Recent Advances[J]. Int. J. Mol. Sci., 2016,17(12):1818-1835.

    18. [18]

      Chen M, Tang X Y, Yang S P, Li H H, Zhao H Q, Jiang Z H, Chen J X, Chen W H. Five Water-Soluble Zwitterionic Copper(Ⅱ)-Carboxylate Polymers: Role of Dipyridyl Coligands in Enhancing the DNA-Binding, Cleaving and Anticancer Activities[J]. Dalton Trans., 2015,44(29):13369-13377. doi: 10.1039/C5DT01648G

    19. [19]

      Reichmann M E, Rice S A, Thomas C A, Doty P. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid[J]. J. Am. Chem. Soc., 1954,76(11):3047-3053. doi: 10.1021/ja01640a067

    20. [20]

      Sheldrick G M. SHELXTL, Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA, 1997.

    21. [21]

      Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structure. University of Göttingen, Germany, 1997.

    22. [22]

      Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1997.

    23. [23]

      Zhou C Q, Lin Y L, Chen J X, Wang L S, Yang N N, Zeng W, Chen W H. Facile Synthesis of a Dimeric Dipyrrole-Polyamide and Synergetic DNA-Cleaving Activity of Its Cu (Ⅱ) Complex[J]. Bioorg. Med. Chem. Lett., 2012,22(18):5853-5856. doi: 10.1016/j.bmcl.2012.07.085

    24. [24]

      Zhou C Q, Lin Y L, Chen J X, Chen W H. Synergetic DNA-Cleaving Activities of the Metal Complexes of a Polyether-Tethered Pyrrolepolyamide Dimer[J]. Chem. Biodivers., 2012,9(6):1125-1132. doi: 10.1002/cbdv.201100183

    25. [25]

      Chen M Z, Chen M, Zhou C Q, Lin W E, Chen J X, Chen W H, Jiang Z H. Synthesis, Crystal Structures and DNA-Cleaving Activities of[Cemp] 2[MCl4] (Cemp=N-Carbethoxymethyl-1, 10-Phenanthrolinium, M=Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ))[J]. Chem. Pharm. Bull., 2013,61(7):714-721. doi: 10.1248/cpb.c13-00198

    26. [26]

      Pang J Y, Qin Y, Chen W H, Luo G A, Jiang Z H. Synthesis and DNA-Binding Affinities of Monomodified Berberines[J]. Bioorg. Med. Chem., 2005,13(20):5835-5840. doi: 10.1016/j.bmc.2005.05.048

    27. [27]

      Molecular Operating Environment (MOE). Chemical Computing Group Inc., 2014.

    28. [28]

      Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C, Ferrin T E. UCSF Chimera-A Visualization System for Exploratory Research and Analysis[J]. J. Comput. Chem., 2004,25(13):1605-1612. doi: 10.1002/jcc.20084

    29. [29]

      Liao G L, Chen X, Wu J H, Qian C, Wang Y, Ji L N, Chao H. Ruthenium(Ⅱ) Polypyridyl Complexes as Dual Inhibitors of Telomerase and Topoisomerase[J]. Dalton Trans., 2015,44(34):15145-15156. doi: 10.1039/C4DT03585B

    30. [30]

      Schrödinger L L C. The PyMOL Molecular Graphics System, Version 1.8, 2015.

    31. [31]

      GAO C Y, QIAO P P, YANG H Z, ZHANG P F, LEI Y B, ZHANG Y P, WANG M, YUE A Q, ZHAO J Z, DU W J. Synthesis, Structure, DNA Interaction and Cytotoxicity of Pyridine-Based Mononuclear Cobalt(Ⅱ) Complex[J]. Chinese J. Inorg. Chem., 2020,36(9):1783-1790.  

    32. [32]

      Schroeder G K, Lad C, Wyman P, Williams N H, Wolfenden R. The Time Required for Water Attack at the Phosphorus Atom of Simple Phosphodiesters and of DNA[J]. Proc. Natl. Acad. Sci. U. S. A., 2006,103(11):4052-4055. doi: 10.1073/pnas.0510879103

    33. [33]

      Xu W, Craft J A, Fontenot P R, Barens M, Knierim K D, Albering J H, Mautner F A, Massoud S S. Effect of the Central Metal Ion on the Cleavage of DNA by [M(TPA)Cl] ClO4 Complexes (M=Co, Cu and Zn, TPA=Tris(2-pyridylmethyl)amine): An Efficient Artificial Nuclease for DNA Cleavage[J]. Inorg. Chim. Acta, 2011,373(1):159-166. doi: 10.1016/j.ica.2011.04.012

    34. [34]

      Roy M, Santhanagopal R, Chakravarty A R. DNA Binding and Oxidative DNA Cleavage Activity of (μ-oxo)Diiron(Ⅲ) Complexes in Visible Light[J]. Dalton Trans., 2009,12(6):1024-1033.

    35. [35]

      Boerner L J K, Zaleski J M. Metal Complex-DNA Interactions: from Transcription Inhibition to Photoactivated Cleavage[J]. Curr. Opin. Chem. Biol., 2005,9(2):135-144. doi: 10.1016/j.cbpa.2005.02.010

    36. [36]

      Arjmand F, Sayeed F, Muddassir M. Synthesis of New Chiral Heterocyclic Schiff Base Modulated Cu(Ⅱ)/Zn(Ⅱ) Complexes: Their Comparative Binding Studies with CT-DNA, Mononucleotides and Cleavage Activity[J]. J. Photochem. Photobiol. B, 2011,103(2):166-179. doi: 10.1016/j.jphotobiol.2011.03.001

    37. [37]

      Gómez-Saiz P, Gil-García R, Maestro M A, Pizarro J L, Arriortua M I, Lezama L, Rojo T, González-Álvareze M, Borráse J, García-Tojal J. Structure, Magnetic Properties and Nuclease Activity of Pyridine-2-carbaldehyde Thiosemicarbazonecopper (Ⅱ) Complexes[J]. J. Inorg. Biochem., 2008,102(10):1910-1920. doi: 10.1016/j.jinorgbio.2008.06.015

    38. [38]

      Chen G J, Qiao X, Qiao P Q, Xu G J, Xu J Y, Tian J L, Wen G, Liu X, Yan S P. Synthesis, DNA Binding, Photo-Induced DNA Cleavage, Cytotoxicity and Apoptosis Studies of Copper(Ⅱ) Complexes[J]. J. Inorg. Biochem., 2011,105(2):119-126. doi: 10.1016/j.jinorgbio.2010.11.008

    39. [39]

      Huang Y, Lu Q S, Zhang J, Zhang Z W, Zhang Y, Chen S Y, Li K, Tan X Y, Lin H H, Yu X Q. DNA Cleavage by Novel Copper(Ⅱ) Complex and the Role of β-Cyclodextrin in Promoting Cleavage[J]. Bioorg. Med. Chem., 2008,16(3):1103-1110. doi: 10.1016/j.bmc.2007.10.088

    40. [40]

      Qin D D, Yang Z Y, Wang B D. Spectra and DNA-Binding Affinities of Copper(Ⅱ), Nickel(Ⅱ) Complexes with a Novel Glycine Schiff Base Derived from Chromone[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2007,68(3):912-917. doi: 10.1016/j.saa.2007.01.005

    41. [41]

      Gao E J, Feng Y H, Su J Q, Meng B, Jia B, Qi Z Z, Peng T T, Zhu M C. Synthesis, Characterization, DNA Binding, Apoptosis and Molecular Docking of Three Mn(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) Complexes with Terpyridine-Based Carboxylic Acid[J]. Appl. Organomet. Chem., 2017,32(3)e4164.

    42. [42]

      Haribabu J, Jeyalakshmi K, Arun Y, Bhuvanesh N S P, Perumal P T, Karvembu R. Synthesis, DNA/Protein Binding, Molecular Docking, DNA Cleavage and In Vitro Anticancer Activity of Nickel (Ⅱ) Bis (thiosemicarbazone) Complexes[J]. RSC Adv., 2015,5(57):46031-46049. doi: 10.1039/C5RA04498G

    43. [43]

      Basheer S M, Rasin P, Kumar S L A, Kumar M S, Sreekanth A. Investigation on DNA/Protein Interaction of Thiosemicarbazone Based Octahedral Nickel (Ⅱ) and Iron (Ⅲ) Complexes[J]. J. Mol. Struct., 2022,1260132913. doi: 10.1016/j.molstruc.2022.132913

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    3. [3]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    4. [4]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    13. [13]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    14. [14]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    15. [15]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    18. [18]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    19. [19]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    20. [20]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

Metrics
  • PDF Downloads(2)
  • Abstract views(613)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return