Citation: Ying-Ying ZHANG, Fei-Fei ZHANG, Lei MA, Li WANG, Jiang-Feng YANG. Control of High Stability CAU-10-X (X=H, NO2, CH3) Pore Chemical Environment for Efficient Capture of N2O[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2213-2221. doi: 10.11862/CJIC.2022.225 shu

Control of High Stability CAU-10-X (X=H, NO2, CH3) Pore Chemical Environment for Efficient Capture of N2O

  • Corresponding author: Jiang-Feng YANG, yangjiangfeng@tyut.edu.cn
  • Received Date: 3 May 2022
    Revised Date: 19 September 2022

Figures(8)

  • Three metal-organic frameworks (MOFs) materials, CAU-10-X (X=H, NO 2, CH3), with different substituents (—X) were synthesized and the adsorption and capture properties of N2O from N2O/N2 mixtures were studied. Considering the experimental results of single-component adsorption isotherm, adsorption heat, and IAST (ideal adsorbed solution theory) selectivity, we found that the adsorption capacity of CAU-10-NO2 was significantly higher than that of the parent CAU-10-H in the low-pressure region, and it could effectively capture N2O from the N2O/N2 mixture, while CAU-10-CH3 showed the opposite effect. The penetration simulation of N2O/N2 mixture further proved that CAU-10-NO2 had a good ability to capture trace N2O, and the cycle experiment showed that CAU-10-NO2 had good stability.
  • 加载中
    1. [1]

      Lashof D A, Ahuja D R. Relative Contributions of Greenhouse Gas Emissions to Global Warming[J]. Nature, 1990,344(6266):529-531. doi: 10.1038/344529a0

    2. [2]

      Mcglade C, Ekins P. The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 ℃[J]. Nature, 2015,517(7533):187-190. doi: 10.1038/nature14016

    3. [3]

      Hu Z, Lee J W, Chandran K, Kim S, Khanal S K. Nitrous Oxide (N2O) Emission from Aquaculture: A Review[J]. Environ. Sci. Technol., 2012,46(12):6470-6480. doi: 10.1021/es300110x

    4. [4]

      Montzka S A, Dlugokencky E J, Butler J H. Non-CO2 Greenhouse Gases and Climate Change[J]. Nature, 2011,476(7358):43-50. doi: 10.1038/nature10322

    5. [5]

      Zhao J F, Guo X W, Sun M R, Zhao Y C, Yang L, Song Y C. N2O Hydrate Formation in Porous Media: A Potential Method to Mitigate N2O Emissions[J]. Chem. Eng. J., 2019,361:12-20. doi: 10.1016/j.cej.2018.12.051

    6. [6]

      Xiao D J, Bloch E D, Mason J A, Queen W L, Hudson M R, Planas N, Borycz J, Dzubak A L, Verma P, Lee K, Bonino F, Crocella V, Yano J, Bordiga S, Truhlar D G, Gagliardi L, Brown C M, Long J R. Oxidation of Ethane to Ethanol by N2O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(Ⅱ) Sites[J]. Nat. Chem., 2014,6(7):590-595. doi: 10.1038/nchem.1956

    7. [7]

      Konsolakis M. Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects[J]. ACS Catal., 2015,5(11):6397-6421. doi: 10.1021/acscatal.5b01605

    8. [8]

      Bols M L, Snyder B E R, Rhoda H M, Cnudde P, Fayad G, Schoonheydt R A, Speybroeck V V, Solomon E I, Sels B F. Coordination and Activation of Nitrous Oxide by Iron Zeolites[J]. Nat. Catal., 2021,4(4):332-340. doi: 10.1038/s41929-021-00602-4

    9. [9]

      Severin K. Synthetic Chemistry with Nitrous Oxide[J]. Chem. Soc. Rev., 2015,44(17):6375-6386. doi: 10.1039/C5CS00339C

    10. [10]

      Hamilton S M, Hopkins W S, Harding D J, Walsh T R, Gruene P, Haertelt M, Fielicke A, Meijer G, Mackenzie S R. Infrared Induced Reactivity on the Surface of Isolated Size-Selected Clusters: Dissociation of N2O on Rhodium Clusters[J]. J. Am. Chem. Soc., 2010,132(5):1448-1449. doi: 10.1021/ja907496c

    11. [11]

      Tsai M L, Hadt R G, Vanelderen P, Sels B F, Schoonheydt R A, Solomon E I. [Cu2O]2+ Active Site Formation in Cu-ZSM-5: Geometric and Electronic Structure Requirements for N2O Activation[J]. J. Am. Chem. Soc., 2014,136(9):3522-3529. doi: 10.1021/ja4113808

    12. [12]

      Zeng R, Feller M, Diskin-Posner Y, Shimon L J W, Ben-David Y, Milstein D. CO Oxidation by N2O Homogeneously Catalyzed by Ruthenium Hydride Pincer Complexes Indicating a New Mechanism[J]. J. Am. Chem. Soc., 2018,140(23):7061-7064. doi: 10.1021/jacs.8b03927

    13. [13]

      Shimizu A, Tanaka K, Fujimori M. Abatement Technologies for N2O Emissions in the Adipic Acid Industry[J]. Chemosphere-Global. Change. Sci., 2000,2(3/4):425-434.

    14. [14]

      Zhang F M, Chen X, Zhuang J, Xiao Q, Zhong Y J, Zhu W D. Direct Oxidation of Benzene to Phenol by N2O over Meso-Fe-ZSM-5 Catalysts Obtained via Alkaline Post-Treatment[J]. Catal. Sci. Technol., 2011,1(7):1250-1255. doi: 10.1039/c1cy00133g

    15. [15]

      Grande C A, Poplow F, Rodrigues A E. Vacuum Pressure Swing Adsorption to Produce Polymer-Grade Propylene[J]. Sep. Sci. Technol., 2010,45(9):1252-1259. doi: 10.1080/01496391003652767

    16. [16]

      Groen J C, Pérez-Ramírez J, Zhu W. Adsorption of Nitrous Oxide on Silicalite-1[J]. J. Chem. Eng. Data, 2002,47(3):587-589. doi: 10.1021/je015527l

    17. [17]

      Saha D, Deng S G. Adsorption Equilibrium, Kinetics, and Enthalpy of N2O on Zeolite 4A and 13X[J]. J. Chem. Eng. Data, 2010,55(9):3312-3317. doi: 10.1021/je100105z

    18. [18]

      Saha D, Bao Z B, Jia F, Deng S G. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A[J]. Environ. Sci. Technol., 2010,44(5):1820-1826. doi: 10.1021/es9032309

    19. [19]

      Wang T C, Bury W, Gómez-Gualdrón D A, Vermeulen N A, Mondloch J E, Deria P, Zhang K, Moghadam P Z, Sarjeant A A, Snurr R Q, Stoddart J F, Hupp J T, Farha O K. Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory[J]. J. Am. Chem. Soc., 2015,137(10):3585-3591. doi: 10.1021/ja512973b

    20. [20]

      LIU Z Q, HUANG Y Q, SUN W Y. Progress in Fluorescence Recognition and Sensing of Solvent and Small Organic Molecules Based on Metal-Organic Framework[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244 

    21. [21]

      Zhang X P, Chen W J, Shi W, Cheng P. Highly Selective Sorption of CO2 and N2O and Strong Gas-Framework Interactions in a Nickel Organic Material[J]. J. Mater. Chem. A, 2016,4(41):16198-16204. doi: 10.1039/C6TA06572D

    22. [22]

      Wang L, Zhang F F, Wang C, Li Y, Yang J F, Li L B, Li J P. Ethylenediamine-Functionalized Metal Organic Frameworks MIL-100(Cr) for Efficient CO2/N2O Separation[J]. Sep. Purif. Technol., 2020,235116219. doi: 10.1016/j.seppur.2019.116219

    23. [23]

      Chen D L, Wang N W, Wang F F, Xie J W, Zhong Y J, Zhu W D, Johnson J K, Krishna R. Utilizing the Gate-Opening Mechanism in ZIF-7 for Adsorption Discrimination between N2O and CO2[J]. J. Phys. Chem. C, 2014,118(31):17831-17837. doi: 10.1021/jp5056733

    24. [24]

      Yang J F, Du B J, Liu J Q, Krishna R, Zhang F F, Zhou W, Wang Y, Li J P, Chen B L. MIL-100Cr with Open Cr Sites for a Record N2O Capture[J]. Chem. Commun., 2018,54(100):14061-14064. doi: 10.1039/C8CC07679K

    25. [25]

      Wang L, Zhang F F, Yang J F, Li L B, Li J P. The Efficient Separation of N2O/CO2 Using Unsaturated Fe2+ Sites in MIL-100Fe[J]. Chem. Commun., 2021,57(54):6636-6639. doi: 10.1039/D1CC01659H

    26. [26]

      Wang X N, Zhang P, Kirchon A, Li J L, Chen W M, Zhao Y M, Li B, Zhou H C. Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal-Organic Framework[J]. J. Am. Chem. Soc., 2019,141(34):13654-13663. doi: 10.1021/jacs.9b06711

    27. [27]

      Yin Z, Wan S, Yang J, Kurmoo M, Zeng M H. Recent Advances in Post-Synthetic Modification of Metal-Organic Frameworks: New Types and Tandem Reactions[J]. Coord. Chem. Rev., 2019,378:500-512. doi: 10.1016/j.ccr.2017.11.015

    28. [28]

      Ma L, Zhang F F, Li K J, Zhang Y Y, Song Z Q, Wang L, Yang J F, Li J P. Improved N 2O Capture Performance of Chromium Terephthalate MIL-101 via Substituent Engineering[J]. J. Solid. State. Chem., 2022,309122951. doi: 10.1016/j.jssc.2022.122951

    29. [29]

      Reinsch H, Van Der Veen M A, Gil B, Marszalek B, Verbiest T, De Vos D E, Stock N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs[J]. Chem. Mater., 2013,25(1):17-26. doi: 10.1021/cm3025445

    30. [30]

      Reinsch H, Waitschat S, Stock N. Mixed-Linker MOFs with CAU-10 Structure: Synthesis and Gas Sorption Characteristics[J]. Dalton Trans., 2013,42(14):4840-4847. doi: 10.1039/c3dt32355b

    31. [31]

      Gao C, Su Y, Quan X, Sharma V K, Chen S, Yu H T, Zhang Y B, Niu J F. Electronic Modulation of Iron-Bearing Heterogeneous Catalysts to Accelerate Fe(Ⅲ)/Fe(Ⅱ) Redox Cycle for Highly Efficient Fenton-like Catalysis[J]. Appl. Catal. B-Environ., 2020,276119016. doi: 10.1016/j.apcatb.2020.119016

    32. [32]

      Myers A L, Prausnitz J M. Thermodynamics of Mixed-Gas Adsorption[J]. Aiche. J., 1965,11(1):121-127. doi: 10.1002/aic.690110125

    33. [33]

      Kumar K V, Gadipelli S, Wood B, Ramisetty K A, Stewart A, Howard C A, Brett D J L, Rodriguez-Reinoso F. Characterization of the Adsorption Site Energies and Heterogeneous Surfaces of Porous Materials[J]. J. Mater. Chem. A, 2019,7(17):10104-10137. doi: 10.1039/C9TA00287A

    34. [34]

      SHANG H, BAI H H, LIU J Q, YANG J F, LI J P. PSA Simulation and Adsorption Separation of CH4-N2 by Self-Supporting Pellets Silicalite-1[J]. CIESC J., 2020,71(5):2088-2098.  

    35. [35]

      Shade D, Marszalek B, Walton K S. Structural Similarity, Synthesis, and Adsorption Properties of Aluminum-Based Metal-Organic Frameworks[J]. Adsorption, 2021,27(2):237-237. doi: 10.1007/s10450-021-00303-1

    36. [36]

      Wang L, Li Y, Wang Y, Yang J F, Li L B, Li J P. Research on CO2-N2O Separation Using Flexible Metal Organic Frameworks[J]. Sep. Purif. Technol., 2020,251117311. doi: 10.1016/j.seppur.2020.117311

  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(15)
  • Abstract views(1199)
  • HTML views(219)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return