Citation: Qiang XIA, Xiao-Gang LIAO, Hai-Li SHEN, Lin ZHENG, Gang LI, Tian TIAN. Co3O4 with Different Morphologies: Synthesis and Performances in Activating Peroxymonosulfate for Methylene Blue Degradation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(11): 2191-2201. doi: 10.11862/CJIC.2022.221 shu

Co3O4 with Different Morphologies: Synthesis and Performances in Activating Peroxymonosulfate for Methylene Blue Degradation

  • Corresponding author: Gang LI, ligang2015@cqut.edu.cn
  • Received Date: 12 April 2022
    Revised Date: 6 September 2022

Figures(10)

  • Three methods (urea hydrothermal-calcination, chemical bath deposition-calcination, and oxalate pyrolysis) were used to prepare Co3O4 powder materials with different morphologies, which were named Co3O4-A, Co3O4-B, and Co3O4-C, respectively. All of them were taken as catalysts to activate peroxymonosulfate (PMS) for the degradation of methylene blue (MB). It is found that these Co3O4 materials were quite different in their catalytic performance. Under the assistance of Co3O4-A, Co3O4-B, and Co3O4-C, the PMS decomposition reaction rate constants were measured as 0.047 1, 0.217 4, and 0.003 7 min-1, while the degradation ratios of MB were 91.25% (reaction time: 50 min), 100.00% (reaction time: 25 min), and 31.55% (reaction time: 50 min), respectively. That is, Co3O4-B had the best catalytic performance. To make clear the difference in the catalytic ability of Co3O4, a series of characterizations were carried out. It is discovered that these Co3O4 materials are different in many ways such as crystallinity, microstructure, specific surface area, surface oxygen vacancy concentration, and surface hydroxyl density. And it is confirmed that the primary factor influencing the catalytic performance of Co3O4 is the surface hydroxyl density. In addition, the optimized parameters for MB degradation in the Co3O4-B/PMS reaction system were determined as follows: reaction temperature 25 ℃, catalyst dosage 0.02 g·L-1, and PMS dosage 0.6 mmol·L-1, where the MB degradation ratio was as high as 98.33%. Moreover, the reactive oxygen species ·SO4-, ·OH, ·O2- and 1O2 were all detected in the Co3O4-B/PMS system according to the quenching experiments and electron paramagnetic resonance tests, and sulfate radicals were identified as the primary reactive oxygen species.
  • 加载中
    1. [1]

      Oh W D, Chang V W C, Hu Z T, Goei R, Lim T T. Enhancing the Catalytic Activity of g-C3N4 through Me Doping (Me=Cu, Co and Fe) for Selective Sulfathiazole Degradation via Redox-Based Advanced Oxidation Process[J]. Chem. Eng. J., 2017,323:260-269. doi: 10.1016/j.cej.2017.04.107

    2. [2]

      Hu P D, Long M C. Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications[J]. Appl. Catal. B-Environ., 2016,181:103-117. doi: 10.1016/j.apcatb.2015.07.024

    3. [3]

      Zhang A Y, He Y Y, Chen Y P, Feng J W, Huang N H, Lian F. Degradation of Organic Pollutants by Co3O4 - Mediated Peroxymonosulfate Oxidation: Roles of High-Energy {001}-Exposed TiO2 Support[J]. Chem. Eng. J., 2018,334:1430-1439. doi: 10.1016/j.cej.2017.11.078

    4. [4]

      Wang Q, Xu Z T, Cao Y T, Chen Y Q, Du X, Yang Y, Wang Z H. Two- Dimensional Ultrathin Perforated Co3O4 Nanosheets Enhanced PMS- Activated Selective Oxidation of Organic Micropollutants in Environmental Remediation[J]. Chem. Eng. J., 2022,427131953. doi: 10.1016/j.cej.2021.131953

    5. [5]

      Anipsitakis G P, Stathatos E. Heterogeneous Activation of Oxone Using Co3O4[J]. J. Phys. Chem. B, 2005,109:13052-13055. doi: 10.1021/jp052166y

    6. [6]

      Chen X Y, Chen J W, Qiao X L, Wang D G, Cai X Y. Performance of Nano-Co3O4/Peroxymonosulfate System: Kinetics and Mechanism Study Using Acid Orange 7 as a Model Compound[J]. Appl. Catal. B - Environ., 2008,80:116-121. doi: 10.1016/j.apcatb.2007.11.009

    7. [7]

      Liang J P, Fu L. Activation of Peroxymonosulfate(PMS) by Co3O4 Quantum Dots Decorated Hierarchical C@Co3O4 for Degradation of Organic Pollutants: Kinetics and Radical - Nonradical Cooperation Mechanisms[J]. Appl. Surf. Sci., 2021,563150335. doi: 10.1016/j.apsusc.2021.150335

    8. [8]

      CHEN T M, CHEN H M, MA H Y, TANG K X, ZHAO Y W. Biochar- Co3O4 Composite Activates Peroxymonosulfate to Degrade Atrazine[J]. China Environmental Science, 2020,40(11):4786-4794. doi: 10.3969/j.issn.1000-6923.2020.11.018

    9. [9]

      Liu B M, Song W B, Wu H X, Liu Z Y, Teng Y, Sun Y J, Xu Y H, Zheng H L. Degradation of Norfloxacin with Peroxymonosulfate Activated by Nanoconfinement Co3O4@CNT Nanocomposite[J]. Chem. Eng. J., 2020,398125498. doi: 10.1016/j.cej.2020.125498

    10. [10]

      Xu H D, Zhang Y C, Li J J, Hao Q Q, Li X, Liu F H. Heterogeneous Activation of Peroxymonosulfate by a Biochar-Supported Co3O4 Composite for Efficient Degradation of Chloramphenicols[J]. Environ. Pollut., 2020,257113610. doi: 10.1016/j.envpol.2019.113610

    11. [11]

      Wang Z M, Wang Z H, Li W, Lan Y Q, Chen C. Performance Comparison and Mechanism Investigation of Co3O4 - Modified Different Crystallographic MnO2 (α, β, γ, and δ) as an Activator of Peroxymonosulfate(PMS) for Sulfisoxazole Degradation[J]. Chem. Eng. J., 2022,427130888. doi: 10.1016/j.cej.2021.130888

    12. [12]

      Zhang H X, Wang J N, Zhang X Y, Li B, Cheng X W. Enhanced Removal of Lomefloxacin Based on Peroxymonosulfate Activation by Co3O4/δ-FeOOH Composite[J]. Chem. Eng. J., 2019,369:834-844. doi: 10.1016/j.cej.2019.03.132

    13. [13]

      LIU M, HU L M, ZHANG G S, WANG P. Activation of Peroxymonosulfate by the Co/Zn Bimetallic Oxide for the Degradation of Bisphenol A[J]. Environmental Chemistry, 2018,37(4):753-760.  

    14. [14]

      Zhao L L, Zhang J M, Zhang Z P, Wei T, Wang J, Ma J, Ren Y M, Zhang H X. Co3O4 Crystal Plane Regulation to Efficiently Activate Peroxymonosulfate in Water: The Role of Oxygen Vacancies[J]. J. Colloid Interface Sci., 2022,623:520-531. doi: 10.1016/j.jcis.2022.05.045

    15. [15]

      Li X N, Rykov A I, Zhang B, Zhangc Y J, Wang J H. Graphene Encapsulated FexCoy Nanocages Derived from Metal-Organic Frameworks as Efficient Activators for Peroxymonosulfate[J]. Catal. Sci. Technol., 2016,6:7486-7494. doi: 10.1039/C6CY01479H

    16. [16]

      Oh W D, Lua S K, Dong Z L, Lim T K. High Surface Area DPA - Hematite for Efficient Detoxification of Bisphenol A via Peroxymonosulfate Activation[J]. J. Mater. Chem. A, 2014,2:15836-15845. doi: 10.1039/C4TA02758B

    17. [17]

      Wacławek S, Grübel K, Černík M. Simple Spectrophotometric Determination of Monopersulfate[J]. Spectroc. Acta Pt. A - Molec. Biomolec. Spectr., 2015,149:928-933. doi: 10.1016/j.saa.2015.05.029

    18. [18]

      Zhou X Q, Luo C G, Luo M Y, Wang Q L, Wang J, Liao Z W, Chen Z L, Chen Z Q. Understanding the Synergetic Effect from Foreign Metals in Bimetallic Oxides for PMS Activation: A Common Strategy to Increase the Stoichiometric Efficiency of Oxidants[J]. Chem. Eng. J., 2020,381122587. doi: 10.1016/j.cej.2019.122587

    19. [19]

      Zhang T, Li C J, Ma J, Tian H, Qiang Z M. Surface Hydroxyl Groups of Synthetic α-FeOOH in Promoting ·OH Generation from Aqueous Ozone: Property and Activity Relationship[J]. Appl. Catal. B-Environ., 2008,82:131-137. doi: 10.1016/j.apcatb.2008.01.008

    20. [20]

      Wang Z, Wang W Z, Zhang L, Dong J. Surface Oxygen Vacancies on Co 3O4 Mediated Catalytic Formaldehyde Oxidation at Room Temperature[J]. Catal. Sci. Technol., 2016,6:3845-3853. doi: 10.1039/C5CY01709B

    21. [21]

      Wang Z, Shen G L, Li J Q, Liu H D, Wang Q, Chen Y F. Catalytic Removal of Benzene over CeO2 - MnOx Composite Oxides Prepared by Hydrothermal Method[J]. Appl. Catal. B - Environ., 2013,138 - 139:253-259. doi: 10.1016/j.apcatb.2013.02.030

    22. [22]

      Du J K, Bao J G, Liu Y, Kim S H, Dionysiou D D. Facile Preparation of Porous Mn/Fe3O4 Cubes as Peroxymonosulfate Activating Catalyst for Effective Bisphenol A Degradation[J]. Chem. Eng. J., 2019,376119193. doi: 10.1016/j.cej.2018.05.177

    23. [23]

      Wang F F, Xiao M L, Ma X Y, Wu S J, Ge M F, Yu X L. Insights into the Transformations of Mn Species for Peroxymonosulfate Activation by Tuning the Mn3O4 Shapes[J]. Chem. Eng. J., 2021,404127097. doi: 10.1016/j.cej.2020.127097

    24. [24]

      Khan A, Wang H B, Liu Y, Jawad A, Ifthikar J, Liao Z W, Wang T, Chen Z Q. Highly Efficient α-Mn2O3@α-MnO2-500 Nanocomposite for Peroxymonosulfate Activation: Comprehensive Investigation of Manganese Oxides[J]. J. Mater. Chem. A, 2018,6:1590-1600. doi: 10.1039/C7TA07942G

    25. [25]

      Dong Z Y, Zhang Q, Chen B Y, Hong J M. Oxidation of Bisphenol A by Persulfate via Fe3O4-α-MnO2 Nanoflower-like Catalyst: Mechanism and Efficiency[J]. Chem. Eng. J., 2019,357:337-347. doi: 10.1016/j.cej.2018.09.179

    26. [26]

      Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J J, Shao H X, Wang Y B, Yu G. MOF-Derived Nitrogen Doped Carbon Modified g-C3N4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation[J]. Appl. Catal. B-Environ., 2018,233:35-45. doi: 10.1016/j.apcatb.2018.03.077

    27. [27]

      Yao Y J, Cai Y M, Wu G D, Wei F Y, Li X Y, Chen H, Wang S B. Sulfate Radicals Induced from Peroxymonosulfate by Cobalt Manganese Oxides (CoxMn3-xO4) for Fenton - like Reaction In Water[J]. J. Hazard. Mater., 2015,296:128-137. doi: 10.1016/j.jhazmat.2015.04.014

    28. [28]

      Gao H Y, Huang C H, Mao L, Shao B, Shao J, Yan Z Y, Tang M, Zhu B Z. First Direct and Unequivocal Electron Spin Resonance Spin - Trapping Evidence for pH-Dependent Production of Hydroxyl Radicals from Sulfate Radicals[J]. Environ. Sci. Technol., 2020,54:14046-14056. doi: 10.1021/acs.est.0c04410

    29. [29]

      Shao S, Li X S, Gong Z M, Fan B, Hu J H, Peng J B, Lu K, Gao S X. A New Insight into the Mechanism in Fe3O4@CuO/PMS System with Low Oxidant Dosage[J]. Chem. Eng. J., 2022,438135474. doi: 10.1016/j.cej.2022.135474

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    5. [5]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    11. [11]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    18. [18]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(26)
  • Abstract views(1636)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return