Citation: De-Peng DENG, Ming-Hua CHEN, Yuan-Dong LIU, Bing-Fei QIAN, Wei-Min XIA, Jun-Ming YI. Crystal Structure of Four CyB5Q[5]-Ca Complexes: The Different Coordination States in Different Anionic Environments[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1927-1938. doi: 10.11862/CJIC.2022.214 shu

Crystal Structure of Four CyB5Q[5]-Ca Complexes: The Different Coordination States in Different Anionic Environments

  • Corresponding author: Ming-Hua CHEN, gui_zhou_chen@163.com
  • Received Date: 9 December 2021
    Revised Date: 10 July 2022

Figures(14)

  • Four CyB5Q[5]-Ca complexes (1-4) have been synthesized by the new member of the cucurbituril family (CyB5Q[5]) and calcium ions in different anionic media. Their structures have been characterized by X-ray single-crystal diffraction. Their crystal structures show that complexes of different coordination types are generated in different environments of Cl-, [ZnCl4]2-, [ZnCl4]2-+ClO4-, and ClO4-, respectively. The coordination number of complexes 1, 2, 3, and 4 are 6, 8, 7, and 6, respectively.
  • 加载中
    1. [1]

      Ni X L, Lin J X, Zheng Y Y, Wu W S, Zhang Y Q, Xue S F, Zhu Q J, Tao Z, Day A I. Supramolecular Bracelets and Interlocking Rings Elaborated through the Interrelationship of Neighboring Chemical Environments of Alkyl-Substitution on Cucurbit[5]uril[J]. Cryst. Growth Des., 2008,9:3446-3450.

    2. [2]

      Andrienko I V, Kovalenko E A, Karmadonova I E, Plyusnin P E, Samsonenko D G, Fedin V P. Zinc and Cobalt Aqua Complexes with Cucurbit[6]uril: Syntheses and Crystal Structures[J]. Russ. J. Coord. Chem., 2019,45:433-438. doi: 10.1134/S1070328419060010

    3. [3]

      Ni X L, Xiao X, Cong H, Lang L L, Chen K, Chen X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Cucurbit[n]uril - based Coordination Chemistry: From Simple Coordination Complexes to Novel Poly-dimensional Coordination Polymers[J]. Chem. Soc. Rev., 2013,42:9480-9508. doi: 10.1039/c3cs60261c

    4. [4]

      Cui X W, Zhao W X, Chen K, Ni X L, Zhang Y Q, Tao Z. Outer Surface Interactions of Cucurbit[6]uril Triggered Supramolecular Three Dimensional Polycatenanes[J]. Chem. Eur. J., 2017,23:2759-2763. doi: 10.1002/chem.201605045

    5. [5]

      Isaacs L. Stimuli Responsive Systems Constructed Using Cucurbit[n] uril-Type Molecular Containers[J]. Acc. Chem. Res., 2014,47:2052-2062. doi: 10.1021/ar500075g

    6. [6]

      Danylyuk O, Worzakowska M, Osypiuk-Tomasik J, Sashuk V, Kedra-Krolik K. Solution - Mediated and Single - Crystal to Single Crystal Transformations of Cucurbit[6]uril Host-Guest Complexes with Dopamine[J]. CrystEngComm, 2020,22:634-638. doi: 10.1039/C9CE01743G

    7. [7]

      Danylyuk O, Butkiewicz H, Sashuk V. Host - Guest Complexes of Cucurbit[6]uril with the Trypanocide Drug Diminazene and Its Degradation Product 4-Aminobenzamidine[J]. CrystEngComm, 2016,18:4905-4908. doi: 10.1039/C6CE00257A

    8. [8]

      Xia Y, Wang C Z, Tian M K, Tao Z, Ni X L, Prior T J, Redshaw C. Host - Guest Interaction of Cucurbit[8]uril with N-(3 - Aminopropyl) cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex[J]. Molecules, 2018,23175181.

    9. [9]

      Wu F, Wu L H, Xiao X, ZhangY Q, Xue S F, Tao Z, Day A I. Locating the Cyclopentano Cousins of the Cucurbit[n]uril Family[J]. J. Org. Chem., 2012,77:606-611. doi: 10.1021/jo2021778

    10. [10]

      Vinciguerra B, Zavalij P Y, Isaacs L. Synthesis and Recognition Properties of Cucurbit[8]uril Derivatives[J]. Org. Lett., 2015,17:5068-5071. doi: 10.1021/acs.orglett.5b02558

    11. [11]

      Hui P, Zhao S J, Deng X Y, Lin R L, Bian B, Tao Z, Xiao X. Selective Recognition and Determination of Phenylalanine by a Fluorescent Probe Based on Cucurbit[8]uril and Palmatine[J]. Anal. Chim. Acta, 2020,1104:164-171. doi: 10.1016/j.aca.2020.01.007

    12. [12]

      Chang Y X, Duan X C, Zhang X M, Liu F, Du L M. A New Fluorometric Method for the Determination of Oxaliplatin Based on Cucurbit[7]uril Supramolecular Interaction[J]. Aust. J. Chem., 2017,70:677-682. doi: 10.1071/CH16398

    13. [13]

      Wang J, Huang Z Z, Ma X, Tian H. Aqueous Phase Visible-Light-Excited Organic Room - Temperature Phosphorescence via Cucurbit[8]uril-Mediated Supramolecular Assembling[J]. Angew. Chem. Int. Ed., 2020,59:9928-9933. doi: 10.1002/anie.201914513

    14. [14]

      Wu H, Chen H, Tang B H, Kang Y T, Xu J F, Zhang X. Host-Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions[J]. Langmuir, 2020,36:1235-1240. doi: 10.1021/acs.langmuir.9b03325

    15. [15]

      Chen R R, Cao M N, Wang J Y, Liao H F, Cao R. Decamethyl-Cucurbit[5]uril Based Supramolecular Assemblies as Efficient Electrocatalysts for the Oxygen Reduction Reaction[J]. Chem. Commun., 2019,55:11687-11690. doi: 10.1039/C9CC05899K

    16. [16]

      Sundararajan M, Park B, Baik M H. Regioselective Oxidation of C—H Bonds in Unactivated Alkanes by a Vanadium Superoxo Catalyst Bound to a Supramolecular Host[J]. Inorg. Chem., 2019,58:16250-16255. doi: 10.1021/acs.inorgchem.9b02803

    17. [17]

      Wang C Z, Zhao W X, Zhang Y Q, Xue S F, Zhu Q J, Tao Z. A Supramolecular Assembly of Methyl Substituted Cucurbit[5]uril and Its Potential Applications in Selective Absorption[J]. RSC Adv., 2015,5:17354-17357. doi: 10.1039/C4RA16602G

    18. [18]

      Luis E T, Day A I, Konig B, Beves J E. Photophysical Activity and Host - Guest Behavior of Ruthenium Polypyridyl Catalysts Encapsulated in Cucurbit[10]uril[J]. Inorg. Chem., 2020,59:9135-9142. doi: 10.1021/acs.inorgchem.0c00986

    19. [19]

      Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Self-Assemblies Based on the"Outer-Surface Interactions"of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials[J]. Acc. Chem. Res., 2014,47:1386-1395. doi: 10.1021/ar5000133

    20. [20]

      Stanley P M, Haimerl J, Thomas C, Urstoeger A, Schuster M, Shustova N B, Casini A, Rieger B, Warnan J, Fischer R A. Host-Guest Interactions in Metal-Organic Framework Isoreticular Series for Molecular Photocatalytic CO2 Reduction[J]. Angew. Chem. Int. Ed., 2021,60:17854-17860. doi: 10.1002/anie.202102729

    21. [21]

      Zhao Y, Mandadapu V, Iranmanesh H, Beves J E, Day A I. The Inheritance Angle Adeterminant for the Number of Members in the Substituted Cucurbit[n]uril Family[J]. Org. Lett., 2017,19:4034-4037. doi: 10.1021/acs.orglett.7b01786

    22. [22]

      Chen M H, Lv N X, Zhao W W, Day A I. The Cyclobutanocucurbit[58]uril Family: Electronegative Cavities in Contrast to Classical Cucurbituril while the Electropositive Outer Surface Acts as a Crystal Packing Driver[J]. Molecules, 2021,26:7343-7354. doi: 10.3390/molecules26237343

    23. [23]

      Zhang S, Grimm L, Miskolczy Z, Biczok L, Biedermann F, Nau W M. Binding Affinities of Cucurbit[n]urils with Cations[J]. Chem. Commun., 2019,55:14131-14134. doi: 10.1039/C9CC07687E

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(4)
  • Abstract views(690)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return