Citation: Biao XUE, Yang-Jie FU, Meng TAN, Chao ZHANG, Ning-Yi LI, Ling-Xuan YANG, Shu-Zhen ZHENG, Qi WANG. Preparation and Visible Light Photocatalytic Properties of N and F Co-doped C3N4[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 2047-2055. doi: 10.11862/CJIC.2022.204 shu

Preparation and Visible Light Photocatalytic Properties of N and F Co-doped C3N4

Figures(10)

  • To overcome the shortcomings of carbon nitride (C3N4), such as easily recombination of photogenerated charges and limited photocatalytic activity, this study explored a method to prepare NF-C3N4 via co-doping of N and F into C3N4 with improved photocatalytic performance.Using HF and NH3 produced by the in-situ decomposition of NH4F at high temperature, dual elements doping was achieved while etching C3N4.N-doped C3N4 (N-C3N4) was prepared by using ammonium chloride (NH4Cl) as a control sample.The effects of N and F co-doping on the morphology, composition, structure, and physicochemical properties of C3N4 were studied using scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), specific surface area, and electrochemistry.Compared with C3N4 and N-C3N4, NF-C3N4 had porous and increased specific surface area, and the generation, separation, and transfer of photogenerated charges were promoted.The photocatalytic reduction rate of Cr(Ⅵ) by NF-C3N4 was 2.6 times that of C3N4 and 1.7 times that of N-C3N4, respectively.The influence of different precursors(urea, dicyandiamide, and melamine)on the preparation of C3N4 was further investigated.It was found that when the mass ratio of C3N4 with urea as a precursor to NH4F was 3∶2, NF-C3N4 showed the best photocatalytic performance.Furthermore, the reduction rate of Cr(Ⅵ) can be enhanced with the increase of catalyst dosage, light intensity, hole trapping agent concentration, and decrease in pH.After 40 min visible light irradiation with 0.1 g·L-1 NF-C3N4, pH=3 and cEDTA-2Na=2 mmol·L-1, the Cr(Ⅵ) removal efficiency reached 90%.Five cyclic runs indicated that the optimized NF-C3N4 remained good performance and high stability for photocatalytic reduction of Cr(Ⅵ).
  • 加载中
    1. [1]

      Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability?[J]. Chem. Rev., 2016,116:7159-7329. doi: 10.1021/acs.chemrev.6b00075

    2. [2]

      Chang Q, Yang S S, Li L Q, Xue C R, Li Y, Wang Y Z, Hu S L, Yang J L, Zhang F. Loading Sulfur and Nitrogen Co-doped Carbon Dots onto g-C3N4 Nanosheets for an Efficient Photocatalytic Reduction of 4-Nitrophenol[J]. Dalton Trans., 2018,47:6435-6443. doi: 10.1039/C8DT00735G

    3. [3]

      Xing Y P, Wang X K, Hao S H, Zhang X L, Wang X, Ma W, Zhao G, Xu X. Recent Advances in the Improvement of g-C3N4 Based Photocatalytic Materials[J]. Chin. Chem. Lett., 2021,32:13-20. doi: 10.1016/j.cclet.2020.11.011

    4. [4]

      Liu J H, Li W F, Duan L M, Li X, Ji L, Geng Z B, Huang K K, Lu L H, Zhou L S, Liu Z R, Chen W, Liu L W, Feng S H, Zhang Y G. A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries[J]. Nano Lett., 2015,15:5137-5142. doi: 10.1021/acs.nanolett.5b01919

    5. [5]

      Mo Z, She X, Li Y, Liu L, Huang L, Chen Z, Zhang Q, Xu H, Li H. Synthesis of g-C3N4 at Different Temperatures for Superior Visible/UV Photocatalytic Performance and Photoelectrochemical Sensing of MB Solution[J]. RSC Adv., 2015,5:101552-101562. doi: 10.1039/C5RA19586A

    6. [6]

      WANG Y Q, SHEN S H. Progress and Prospects of Non-metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Phys.-Chim. Sin., 2020,361905080. doi: 10.3866/PKU.WHXB201905080

    7. [7]

      Zhou Y J, Zhang L X, Huang W M, Kong Q L, Fan X Q, Wang M, Shi J L. N-Doped Graphitic Carbon-Incorporated g-C3N4 for Remarkably Enhanced Photocatalytic H2 Evolution under Visible Light[J]. Carbon, 2016,99:111-117. doi: 10.1016/j.carbon.2015.12.008

    8. [8]

      Wang Y, Di Y, Antonietti M, Li H R, Chen X F, Wang X C. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids[J]. Chem. Mater., 2010,22:5119-5121. doi: 10.1021/cm1019102

    9. [9]

      Shevlin S A, Guo Z X. Anionic Dopants for Improved Optical Absorption and Enhanced Photocatalytic Hydrogen Production in Graphitic Carbon Nitride[J]. Chem. Mater., 2016,28:7250-7256. doi: 10.1021/acs.chemmater.6b02002

    10. [10]

      Hu S Z, Ma L, Xie Y, Li F Y, Fan Z P, Wang F, Wang Q, Wang Y J, Kang X X, Wu G. Hydrothermal Synthesis of Oxygen Functionalized S-P Codoped g-C3N4 Nanorods with Outstanding Visible Light Activity under Anoxic Conditions[J]. Dalton Trans., 2015,44:20889-20897. doi: 10.1039/C5DT04035C

    11. [11]

      Zhang H, Zhao Z B, Hou Y N, Tang Y C, Dong Y F, Wang S, Hu X J, Zhang Z C, Wang X Z, Qiu J S. Nanopore-Confined g-C3N4 Nanodots in N, S Co-doped Hollow Porous Carbon with Boosted Capacity for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2018,6:7133-7141. doi: 10.1039/C8TA00529J

    12. [12]

      Huang Y Q, Yan Q, Yan H J, Tang Y Q, Chen S, Yu Z Y, Tian C G, Jiang B J. Layer Stacked Lodine and Phosphorus Co-doped C3N4 for Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. ChemCatChem, 2017,9:4083-4089. doi: 10.1002/cctc.201700786

    13. [13]

      Wang Q, Zhu N X, Liu E Q, Zhang C L, Crittenden J C, Zhang Y, Cong Y Q. Fabrication of Visible-Light Active Fe2O3-GQDs/NF-TiO2 Composite Film with Highly Enhanced Photoelectrocatalytic Performance[J]. Appl. Catal. B-Environ., 2017,205:347-356. doi: 10.1016/j.apcatb.2016.11.046

    14. [14]

      Liu C Y, Huang H W, Cui W, Dong F, Zhang Y H. Band Structure Engineering and Efficient Charge Transport in Oxygen Substituted g-C3N4 for Superior Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B-Environ., 2018,230:115-124. doi: 10.1016/j.apcatb.2018.02.038

    15. [15]

      Wang Q, Chen C, Zhao D, Ma W H, Zhao J. Change of Adsorption Modes of Dyes on Fluorinated TiO2 and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation[J]. Langmuir, 2008,24:7338-7345. doi: 10.1021/la800313s

    16. [16]

      Fu Y J, Zhang K J, Zhang Y, Cong Y Q, Wang Q. Fabrication of Visible-Light-Active MR/NH2-MIL-125(Ti) Homojunction with Boosted Photocatalytic Performance[J]. Chem. Eng. J., 2021,412128722. doi: 10.1016/j.cej.2021.128722

    17. [17]

      Zhang K J, Fu Y J, Hao D R, Guo J Y, Ni B J, Jiang B Q, Xu L, Wang Q. Fabrication of CN75/NH2-MIL-53(Fe) p-n Heterojunction with Wide Spectral Response for Efficiently Photocatalytic Cr (Ⅵ) Reduction[J]. J. Alloy. Compd., 2022,891161994. doi: 10.1016/j.jallcom.2021.161994

    18. [18]

      Chu C C, Miao W, Li Q J, Wang D D, Liu Y, Mao S. Highly Efficient Photocatalytic H2O2 Production with Cyano and SnO2 Co-Modified g-C3N4[J]. Chem. Eng. J., 2022,428132531. doi: 10.1016/j.cej.2021.132531

    19. [19]

      Wang Y, Wang X C, Antonietti M, Zhang Y J. Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates[J]. ChemSusChem, 2010,3:435-439. doi: 10.1002/cssc.200900284

    20. [20]

      Grape E S, Flores J G, Hidalgo T, Martinez-Ahumada E, Gutierrez-Alejandre A, Hautier A, Williams D R, O'Keeffe M, Ohrstrom L, Willhammar T, Horcajada P, Ibarra I A, Inge A K. A Robust and Biocompatible Bismuth Ellagate MOF Synthesized under Green Ambient Conditions[J]. J. Am. Chem. Soc., 2020,142:16795-16804. doi: 10.1021/jacs.0c07525

    21. [21]

      Tan M, Gao Q Y, Fu Y J, Xu Y R, Hao D, Ni B J, Wang Q. Fabrication of Visible-Light-Active Fe-2MI Film Electrode for Simultaneous Removal of Cr(Ⅵ) and Phenol[J]. Mat. Sci. Semicon. Proc., 2022,151107013. doi: 10.1016/j.mssp.2022.107013

    22. [22]

      Zhang S Y, Yang Y, Zhai Y P, Wen J Q, Zhang M, Yu J K, Lu S Y. A Novel P-Doped and NCDs Loaded g-C3N4 with Enhanced Charges Separation for Photocatalytic Hydrogen Evolution[J]. Chin. Chem. Lett., 2022,228417.

    23. [23]

      Huang D, Sun X B, Liu Y D, Ji H D, Liu W, Wang C C, Ma W Y, Cai Z Q. A Carbon-Rich g-C3N4 with Promoted Charge Separation for Highly Efficient Photocatalytic Degradation of Amoxicillin[J]. Chin. Chem. Lett., 2021,32:2787-2791. doi: 10.1016/j.cclet.2021.01.012

    24. [24]

      Wang K, Li Q, Liu B S, Cheng B, Ho W K, Yu J G. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2-Reduction Performance[J]. Appl. Catal. B-Environ., 2015,176-177:44-52. doi: 10.1016/j.apcatb.2015.03.045

    25. [25]

      Zhou S Q, Wang Y, Zhou K, Ba D Y, Ao Y H, Wang P F. In-Situ Construction of Z-Scheme g-C3N4/WO3 Composite with Enhanced Visible-Light Responsive Performance for Nitenpyram Degradation[J]. Chin. Chem. Lett., 2021,32:2179-2182. doi: 10.1016/j.cclet.2020.12.002

    26. [26]

      Wang Q, Chen C C, Ma W H, Zhu H Y, Zhao J C. Pivotal Role of Fluorine in Tuning Band Structure and Visible-Light Photocatalytic Activity of Nitrogen-Doped TiO2[J]. Chem. Eur. J., 2009,15:4765-4769. doi: 10.1002/chem.200900221

    27. [27]

      Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi A, Nafady A, Ma S. Substituent Engineering in g-C3N4/COF Heterojunctions for Rapid Charge Separation and High Photo-Redox Activity[J]. Sci. China Chem., 2022,65:1704-1709.

    28. [28]

      Juan J T, María A G, Litter M I. Heterogeneous Photocatalytic Reduction of Chromium (Ⅵ) over TiO2 Particles in the Presence of Oxalate Involvement of Cr(Ⅴ) Species[J]. Environ. Sci. Technol., 2004,38:1589-1594. doi: 10.1021/es0346532

    29. [29]

      Li S J, Cai M J, Wang C C, Liu Y P, Li N, Zhang P, Li X. Rationally Designed Ta3N5/BiOCl S-Scheme Heterojunction with Oxygen Vacancies for Elimination of Tetracycline Antibiotic and Cr(Ⅵ): Performance, Toxicity Evaluation and Mechanism Insight[J]. J. Mater. Sci. Technol., 2022,123:177-190. doi: 10.1016/j.jmst.2022.02.012

  • 加载中
    1. [1]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(30)
  • Abstract views(1397)
  • HTML views(437)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return