Two Iridium Complexes Containing Aldehyde Group for Cysteine and OH- Recognition
- Corresponding author: Hong-Yan LI, hyli@hebut.edu.cn
Citation:
Xin TONG, Shi-Sheng ZHAO, Xi CHU, Wen-Hao LI, Hong-Yan LI. Two Iridium Complexes Containing Aldehyde Group for Cysteine and OH- Recognition[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(10): 1939-1947.
doi:
10.11862/CJIC.2022.201
Chen X Q, Zhou Y, Peng X J, Yoon J. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem. Soc. Rev., 2010,39(6):2120-2135. doi: 10.1039/b925092a
Espinosa-Diez C, Miguel V, Vallejo S, Sanchez F J, Sandoval E, Blanco E, Cannata P, Peiro C, Sanchez-Ferrer C F, Lamas S. Role of Glutathione Biosynthesis in Endothelial Dysfunction and Fibrosis[J]. Redox Biol., 2018,14:88-99. doi: 10.1016/j.redox.2017.08.019
Paul B D, Sbodio J I, Snyder S H. Cysteine Metabolism in Neuronal Redox Homeostasis[J]. Trends Pharmacol. Sci., 2018,39(5):513-524. doi: 10.1016/j.tips.2018.02.007
Kou L F, Jiang X Y, Huang H R, Lin X L, Zhang Y T, Yao Q, Chen R J. The Role of Transporters in Cancer Redox Homeostasis and Cross-Talk with Nanomedicines[J]. Asian J. Pharm. Sci., 2020,15(2):145-157. doi: 10.1016/j.ajps.2020.02.001
Hou X F, Li Z S, Li Y Q, Zhou Q H, Liu C H, Fan D, Wang J J, Xu R J, Xu Z H. ICT-Modulated NIR Water-Soluble Fluorescent Probe with Large Stokes Shift for Selective Detection of Cysteine in Living Cells and Zebrafish.Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr., 2021,246119030. doi: 10.1016/j.saa.2020.119030
Liang B B, Wang B Y, Ma Q J, Xie C X, Li X, Wang S P. A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living Cells Based on a 1, 8-Naphthalimide Derivative.Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr., 2018,192:67-74. doi: 10.1016/j.saa.2017.10.044
Liu Z K, Wang Q Q, Wang H, Su W T, Dong S L. A Chloroacetate Based Ratiometric Fluorescent Probe for Cysteine Detection in Biosystems[J]. Tetrahedron Lett., 2019,60(44)151218. doi: 10.1016/j.tetlet.2019.151218
Liu C L, Liu J P, Zhang W Z, Wang Y L, Liu Q, Song B, Yuan J L, Zhang R. "Two Birds with One Stone" Ruthenium(Ⅱ) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo[J]. Adv. Sci., 2020,7(14)2000458. doi: 10.1002/advs.202000458
Shahrokhian S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode[J]. Anal. Chem., 2001,73(24):5972-5978. doi: 10.1021/ac010541m
Song P S, Chen X T, Xiang Y, Huang L, Zhou Z J, Wei R R, Tong A J. A Ratiometric Fluorescent Ph Probe Based on Aggregation-Induced Emission Enhancement and Its Application in Live-Cell Imaging[J]. J. Mater. Chem., 2011,21(35):13470-13475. doi: 10.1039/c1jm12098k
Khodadoust S, Kouri N C, Talebiyanpoor M S, Deris J, Pebdani A A. Design of an Optically Stable Ph Sensor Based on Immobilization of Giemsa on Triacetylcellulose Membrane[J]. Mater. Sci. Eng. C, 2015,57:304-308. doi: 10.1016/j.msec.2015.07.056
Cajaraville M P, Orive E, Villate F, Laza-Martínez A, Uriarte I, Garmendia L, Ortiz-Zarragoitia M, Seoane S, Iriarte A, Marigómez I. Health Status of the Bilbao Estuary: A Review of Data from a Multidisciplinary Approach[J]. Estuar. Coast. Shelf Sci., 2016,179:124-134. doi: 10.1016/j.ecss.2016.01.013
Alsudir S, Lai E P C. Selective Detection of ZnO Nanoparticles in Aqueous Suspension by Capillary Electrophoresis Analysis Using Dithiothreitol and L-Cysteine Adsorbates[J]. Talanta, 2017,169:115-122. doi: 10.1016/j.talanta.2017.03.019
Hassan S S M, El-Baz A E, Abd-Rabboh H S M. A Novel Potentiometric Biosensor for Selective L-Cysteine Determination Using L-Cysteine-Desulfhydrase Producing Trichosporon Jirovecii Yeast Cells Coupled with Sulfide Electrode[J]. Anal. Chim. Acta, 2007,602(1):108-113. doi: 10.1016/j.aca.2007.09.007
Brundu S, Nencioni L, Celestino I, Coluccio P, Palamara A T, Magnani M, Fraternale A. Validation of a Reversed-Phase High Performance Liquid Chromatography Method for the Simultaneous Analysis of Cysteine and Reduced Glutathione in Mouse Organs. Oxidative Med[J]. Cell. Longev., 2016,20161746985.
Dogan C E, Cebi N, Develioglu A, Olgun E, Sagdic O. Detection of Cystine and Cysteine in Wheat Flour Using a Robust LC-MS/MS Method[J]. J. Cereal Sci., 2018,84:49-54. doi: 10.1016/j.jcs.2018.09.015
Meng Z C, Zhang H F, Zheng J B. An Electrochemical Sensor Based on Titanium Oxide-Carbon Nanotubes Nanocomposite for Simultaneous Determination of Hydroquinone and Catechol[J]. Res. Chem. Intermed., 2015,41(5):3135-3146. doi: 10.1007/s11164-013-1420-9
Hesse S J A, Ruijter G J G, Dijkema C, Visser J. Measurement of Intracellular (Compartmental) pH by 31P NMR in Aspergillus Niger[J]. J. Biotechnol., 2000,77(1):5-15. doi: 10.1016/S0168-1656(99)00203-5
Maskula S, Nyman J, Ivaska A. Titration of Strong and Weak Acids by Sequential Injection Analysis Technique[J]. Talanta, 2000,52:91-99. doi: 10.1016/S0039-9140(00)00323-4
Shi H D, Wang Y, Lin S M, Lou J X, Zhang Q L. Recent Development and Application of Cyclometalated Iridium(Ⅲ) Complexes as Chemical and Biological Probes[J]. RSC Adv., 2015,5(91):74924-74931. doi: 10.1039/C5RA09609J
Mei Q B, Shi Y J, Hua Q F, Tong B H. Phosphorescent Chemosensor for Hg2+ Based on an Iridium(Ⅲ) Complex Coordinated with 4-Phenylquinazoline and Carbazole Dithiocarbamate[J]. RSC Adv., 2015,5(91):74924-74931. doi: 10.1039/C5RA09609J
Ma X F, Luo X F, Yan Z P, Wu Z G, Zhao Y, Zheng Y X, Zuo J L. Syntheses, Crystal Structures, and Photoluminescence of a Series of Iridium(Ⅲ) Complexes Containing the Pentafluorosulfanyl Group[J]. Organometallics, 2019,38(19):3553-3559. doi: 10.1021/acs.organomet.9b00392
Lai P N, Brysacz C H, Alam M K, Ayoub N A, Gray T G, Bao J M, Teets T S. Highly Efficient Red-Emitting Bis-cyclometalated Iridium Complexes[J]. J. Am. Chem. Soc., 2018,140(32):10198-10207. doi: 10.1021/jacs.8b04841
Ponram M, Balijapalli U, Sambath B, Iyer S K, Kakaraparthi K, Thota G, Bakthavachalam V, Cingaram R, Sung-Ho J, Sundaramur-thy K N. Inkjet-Printed Phosphorescent Iridium(Ⅲ) Complex Based Paper Sensor for Highly Selective Detection of Hg2+[J]. Dyes Pigment., 2019,163:176-182. doi: 10.1016/j.dyepig.2018.11.054
Li Z B, Ge Z R, Tong X, Guo L Y, Huo J L, Li D C, Li H Y, Lu A D, Li T Y. Phosphorescent Iridium(Ⅲ) Complexes Bearing L-Alanine Ligands: Synthesis, Crystal Structures, Photophysical Properties, DFT Calculations, and Use as Chemosensors for Cu2+ Ion[J]. Dyes Pigment., 2021,186109016. doi: 10.1016/j.dyepig.2020.109016
Liu S J, Wei L W, Guo S, Jiang J Y, Zhang P L, Han J M, Ma Y, Zhao Q. Anionic Iridium(Ⅲ) Complexes and Their Conjugated Polymer Soft Salts for Time-Resolved Luminescent Detection of Intracel-lular Oxygen Levels[J]. Sens. Actuators B, 2018,262:436-443. doi: 10.1016/j.snb.2018.01.201
Zhou Y Y, Xie K, Kong L Y, Chen F, Sun D Y. Highly Selective Electrochemiluminescent Probe to Histidine[J]. J. Electroanal. Chem., 2017,799:122-125. doi: 10.1016/j.jelechem.2017.05.054
Li Y Y, Wu Y Q, Wu J, Lun W C, Zeng H, Fan X L. A Near-Infrared Phosphorescent Iridium(Ⅲ) Complex for Fast and Time-Resolved Detection of Cysteine and Homocysteine[J]. Analyst, 2020,145(6):2238-2244. doi: 10.1039/C9AN02469G
Alam P, Kaur G, Sarmah A, Roy R K, Choudhury A R, Laskar I R. Highly Selective Detection of H+ and OH- with a Single-Emissive Iridium(Ⅲ) Complex: A Mild Approach to Conversion of Non-AIEE to AIEE Complex[J]. Organometallics, 2015,34(18):4480-4490. doi: 10.1021/acs.organomet.5b00447
Yu T Z, Wang Y J, Zhu Z Y, Li Y M, Zhao Y L, Liu X X, Zhang H. Two New Phosphorescent Ir(Ⅲ) Complexes as Efficient Selective Sensors for the Cu2+ Ion[J]. Dyes Pigment., 2019,161:252-260. doi: 10.1016/j.dyepig.2018.09.075
Shiu H Y, Wong M K, Che C M. "Turn-On"FRET-Based Luminescent Iridium(Ⅲ) Probes for the Detection of Cysteine and Homocysteine[J]. Chem. Commun., 2011,47(15):4367-4369. doi: 10.1039/c0cc04288a
Mao Z F, Wang M D, Liu J B, Liu L J, Lee S M Y, Leung C H, Ma D L. A Long Lifetime Switch-On Iridium(Ⅲ) Chemosensor for the Visualization of Cysteine in Live Zebrafish[J]. Chem. Commun., 2016,52(24):4450-4453. doi: 10.1039/C6CC01008C
ZHANG S, XUE L S, WU C, ZHENG Y X, ZUO J L. Synthesis and Electroluminescence of Two Red Iridium Complexes[J]. Chinese J. Inorg. Chem., 2014,30(1):134-141.
Zeng X S, Batsanov A S, Bryce M R. Calix[6]arene Derivatives Selectively Functionalized at Alternate Sites on the Smaller Rim with 2-Phenylpyridine and 2-Fluorenylpyridine Substituents to Provide Deep Cavities[J]. J. Org. Chem., 2006,71(26):9589-9594. doi: 10.1021/jo0614341
Wong W Y, Ho C L, Gao Z Q, Mi B X, Chen C H, Cheah K W, Lin Z Y. Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphores[J]. Angew. Chem. Int. Ed., 2006,45(46):7800-7803. doi: 10.1002/anie.200602906
PAN M, LI S H, CHENG M L, HU Y Y, SHI P, XU J Y, TONG B H, FENG M Q, ZHANG Q F. Effect of Ancillary Ligand on Photoelectric Properties of Cinnoline Iridium Complexes[J]. Chinese J. Inorg. Chem., 2018,34(4):627-632.
Zanoni K P S, Vilela R R C, Silva I D A, Iha N Y M, Eckert H, De Camargo A S S. Photophysical Properties of Ir(Ⅲ) Complexes Immobi-lized in MCM-41 via Templated Synthesis[J]. Inorg. Chem., 2019,58(8):4962-4971. doi: 10.1021/acs.inorgchem.8b03633
Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices[J]. Adv. Mater., 2011,23(8):926-952. doi: 10.1002/adma.201003128
Wu C, Vellaisamy K, Yang G J, Dong Z Z, Leung C H, Liu J B, Ma D L. A Reaction-Based Luminescent Switch-On Sensor for the Detection of OH- Ions in Simulated Wastewater[J]. Dalton Trans., 2017,46(20):6677-6682. doi: 10.1039/C7DT00633K
Han D M, Ji X Q, Zhao L H, Pang C Y. Theoretical Insight on Electronic Structure and Photophysical Properties of a Series of Cyclometalated Iridium(Ⅲ) Complexes Bearing the Substituted Phenylpyrazole with Different Electron-Donating or Electron-Accepting Groups[J]. Photochem. Photobiol. Sci., 2021,20(11):1487-1495. doi: 10.1007/s43630-021-00125-8
Datta B K, Thiyagarajan D, Samanta S, Ramesh A, Das G. A Novel Chemosensor with Visible Light Excitability for Sensing Zn2+ in Physiological Medium and in HeLa Cells[J]. Org. Biomol. Chem., 2014,12(27):4975-4982. doi: 10.1039/C4OB00653D
Ma Y, Liu S J, Yang H R, Wu Y Q, Sun H H, Wang J X, Zhao Q, Li F Y, Huang W. A Water-Soluble Phosphorescent Polymer for Time-Resolved Assay and Bioimaging of Cysteine/Homocysteine[J]. J. Mater. Chem. B, 2013,1(3):319-329. doi: 10.1039/C2TB00259K
Wang H, Hu L, Du W, Tian X H, Hu Z J, Zhang Q, Zhou H P, Wu J Y, Uvdal K, Tian Y P. Mitochondria-Targeted Iridium(Ⅲ) Complexes as Two-Photon Fluorogenic Probes of Cysteine/Homocysteine[J]. Sens. Actuators B, 2018,255:408-415. doi: 10.1016/j.snb.2017.08.074
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
Bars represent the photoluminescence intensity (I584 nm for Ir1, I530 nm for Ir2); Black bars represent the blank solutions, red bars represent the addition of 1.0 mmol·L-1 of various amino acids to the blank solution and blue bars represent the subsequent addition of Cys (1.0 mmol·L-1) to the aforementioned solutions
(a) Ir1, λex=399 nm; (b) Ir2, λex=397 nm; Inset: plot of intensity vs cCys (0-2.0 mmol·L-1)