Citation: Xin TONG, Shi-Sheng ZHAO, Xi CHU, Wen-Hao LI, Hong-Yan LI. Two Iridium Complexes Containing Aldehyde Group for Cysteine and OH- Recognition[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1939-1947. doi: 10.11862/CJIC.2022.201 shu

Two Iridium Complexes Containing Aldehyde Group for Cysteine and OH- Recognition

  • Corresponding author: Hong-Yan LI, hyli@hebut.edu.cn
  • Received Date: 25 January 2022
    Revised Date: 10 July 2022

Figures(8)

  • Two iridium(Ⅲ) complexes, [Ir(L1)2(dbr-bpy)]PF6 (Ir1) and [Ir(L2)2(dbr-bpy)]PF6 (Ir2) with 4, 4'-dibromo-2, 2'-bipyridine (dbr-bpy) as neutral ligand, 6-phenylnicotinaldehyde (L1) and 6-(4-trifluoromethylphenyl)pyridine-3-carbaldehyde (L2) as cyclometalated ligands, were synthesized and characterized by 1H NMR, 13C NMR, IR and MS spectra. For the emission spectra in acetonitrile solution, the maximum peaks were located at 584 and 530 nm for complexes Ir1 and Ir2 with quantum efficiencies of 49% and 66%, respectively. The introduction of electronwithdrawing trifluoromethyl and aldehyde groups resulted in an obvious blue shift in the emission spectra of complexes Ir1 and Ir2. The study of cyclic voltammograms indicates trifluoromethyl moieties in the cyclometalated ligands of complexes Ir1 and Ir2 can reduce the energy of the highest occupied molecular orbital (HOMO), and make the oxidation potential shift towards the anode. Density functional theory (DFT) calculations have been carried out to gain insight into their frontier molecular orbital properties and transition details. Complexes Ir1 and Ir2 displayed significant phosphorescence quenching upon binding to cysteine (Cys), and the binding stoichiometry was approximately 1:2 with the detection limit of 35.1 and 18.5 μmol·L-1, respectively. Both complexes showed a good anti-interference ability for the detection of Cys. Upon the addition of OH- into the solution of Ir2 in DMSO/H2O (7∶3, V/V), OH- replaced the bromine substituents on the neutral ligand of Ir2, resulting in a blue shift of the emission peak. The luminescence color of complex Ir2 changed from yellow to green and Ir2 showed a 4-fold enhanced emission in an alkaline environment when compared to neutral pH. In addition, complex Ir2 exhibited high sensitivity and selectivity for OH- and showed good anti-interference ability.
  • 加载中
    1. [1]

      Chen X Q, Zhou Y, Peng X J, Yoon J. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem. Soc. Rev., 2010,39(6):2120-2135. doi: 10.1039/b925092a

    2. [2]

      Espinosa-Diez C, Miguel V, Vallejo S, Sanchez F J, Sandoval E, Blanco E, Cannata P, Peiro C, Sanchez-Ferrer C F, Lamas S. Role of Glutathione Biosynthesis in Endothelial Dysfunction and Fibrosis[J]. Redox Biol., 2018,14:88-99. doi: 10.1016/j.redox.2017.08.019

    3. [3]

      Paul B D, Sbodio J I, Snyder S H. Cysteine Metabolism in Neuronal Redox Homeostasis[J]. Trends Pharmacol. Sci., 2018,39(5):513-524. doi: 10.1016/j.tips.2018.02.007

    4. [4]

      Kou L F, Jiang X Y, Huang H R, Lin X L, Zhang Y T, Yao Q, Chen R J. The Role of Transporters in Cancer Redox Homeostasis and Cross-Talk with Nanomedicines[J]. Asian J. Pharm. Sci., 2020,15(2):145-157. doi: 10.1016/j.ajps.2020.02.001

    5. [5]

      Hou X F, Li Z S, Li Y Q, Zhou Q H, Liu C H, Fan D, Wang J J, Xu R J, Xu Z H. ICT-Modulated NIR Water-Soluble Fluorescent Probe with Large Stokes Shift for Selective Detection of Cysteine in Living Cells and Zebrafish.Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr., 2021,246119030. doi: 10.1016/j.saa.2020.119030

    6. [6]

      Liang B B, Wang B Y, Ma Q J, Xie C X, Li X, Wang S P. A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living Cells Based on a 1, 8-Naphthalimide Derivative.Spectroc[J]. Acta Pt. A-Molec. Biomolec. Spectr., 2018,192:67-74. doi: 10.1016/j.saa.2017.10.044

    7. [7]

      Liu Z K, Wang Q Q, Wang H, Su W T, Dong S L. A Chloroacetate Based Ratiometric Fluorescent Probe for Cysteine Detection in Biosystems[J]. Tetrahedron Lett., 2019,60(44)151218. doi: 10.1016/j.tetlet.2019.151218

    8. [8]

      Liu C L, Liu J P, Zhang W Z, Wang Y L, Liu Q, Song B, Yuan J L, Zhang R. "Two Birds with One Stone" Ruthenium(Ⅱ) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo[J]. Adv. Sci., 2020,7(14)2000458. doi: 10.1002/advs.202000458

    9. [9]

      Shahrokhian S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode[J]. Anal. Chem., 2001,73(24):5972-5978. doi: 10.1021/ac010541m

    10. [10]

      Song P S, Chen X T, Xiang Y, Huang L, Zhou Z J, Wei R R, Tong A J. A Ratiometric Fluorescent Ph Probe Based on Aggregation-Induced Emission Enhancement and Its Application in Live-Cell Imaging[J]. J. Mater. Chem., 2011,21(35):13470-13475. doi: 10.1039/c1jm12098k

    11. [11]

      Khodadoust S, Kouri N C, Talebiyanpoor M S, Deris J, Pebdani A A. Design of an Optically Stable Ph Sensor Based on Immobilization of Giemsa on Triacetylcellulose Membrane[J]. Mater. Sci. Eng. C, 2015,57:304-308. doi: 10.1016/j.msec.2015.07.056

    12. [12]

      Cajaraville M P, Orive E, Villate F, Laza-Martínez A, Uriarte I, Garmendia L, Ortiz-Zarragoitia M, Seoane S, Iriarte A, Marigómez I. Health Status of the Bilbao Estuary: A Review of Data from a Multidisciplinary Approach[J]. Estuar. Coast. Shelf Sci., 2016,179:124-134. doi: 10.1016/j.ecss.2016.01.013

    13. [13]

      Alsudir S, Lai E P C. Selective Detection of ZnO Nanoparticles in Aqueous Suspension by Capillary Electrophoresis Analysis Using Dithiothreitol and L-Cysteine Adsorbates[J]. Talanta, 2017,169:115-122. doi: 10.1016/j.talanta.2017.03.019

    14. [14]

      Hassan S S M, El-Baz A E, Abd-Rabboh H S M. A Novel Potentiometric Biosensor for Selective L-Cysteine Determination Using L-Cysteine-Desulfhydrase Producing Trichosporon Jirovecii Yeast Cells Coupled with Sulfide Electrode[J]. Anal. Chim. Acta, 2007,602(1):108-113. doi: 10.1016/j.aca.2007.09.007

    15. [15]

      Brundu S, Nencioni L, Celestino I, Coluccio P, Palamara A T, Magnani M, Fraternale A. Validation of a Reversed-Phase High Performance Liquid Chromatography Method for the Simultaneous Analysis of Cysteine and Reduced Glutathione in Mouse Organs. Oxidative Med[J]. Cell. Longev., 2016,20161746985.

    16. [16]

      Dogan C E, Cebi N, Develioglu A, Olgun E, Sagdic O. Detection of Cystine and Cysteine in Wheat Flour Using a Robust LC-MS/MS Method[J]. J. Cereal Sci., 2018,84:49-54. doi: 10.1016/j.jcs.2018.09.015

    17. [17]

      Meng Z C, Zhang H F, Zheng J B. An Electrochemical Sensor Based on Titanium Oxide-Carbon Nanotubes Nanocomposite for Simultaneous Determination of Hydroquinone and Catechol[J]. Res. Chem. Intermed., 2015,41(5):3135-3146. doi: 10.1007/s11164-013-1420-9

    18. [18]

      Hesse S J A, Ruijter G J G, Dijkema C, Visser J. Measurement of Intracellular (Compartmental) pH by 31P NMR in Aspergillus Niger[J]. J. Biotechnol., 2000,77(1):5-15. doi: 10.1016/S0168-1656(99)00203-5

    19. [19]

      Maskula S, Nyman J, Ivaska A. Titration of Strong and Weak Acids by Sequential Injection Analysis Technique[J]. Talanta, 2000,52:91-99. doi: 10.1016/S0039-9140(00)00323-4

    20. [20]

      Shi H D, Wang Y, Lin S M, Lou J X, Zhang Q L. Recent Development and Application of Cyclometalated Iridium(Ⅲ) Complexes as Chemical and Biological Probes[J]. RSC Adv., 2015,5(91):74924-74931. doi: 10.1039/C5RA09609J

    21. [21]

      Mei Q B, Shi Y J, Hua Q F, Tong B H. Phosphorescent Chemosensor for Hg2+ Based on an Iridium(Ⅲ) Complex Coordinated with 4-Phenylquinazoline and Carbazole Dithiocarbamate[J]. RSC Adv., 2015,5(91):74924-74931. doi: 10.1039/C5RA09609J

    22. [22]

      Ma X F, Luo X F, Yan Z P, Wu Z G, Zhao Y, Zheng Y X, Zuo J L. Syntheses, Crystal Structures, and Photoluminescence of a Series of Iridium(Ⅲ) Complexes Containing the Pentafluorosulfanyl Group[J]. Organometallics, 2019,38(19):3553-3559. doi: 10.1021/acs.organomet.9b00392

    23. [23]

      Lai P N, Brysacz C H, Alam M K, Ayoub N A, Gray T G, Bao J M, Teets T S. Highly Efficient Red-Emitting Bis-cyclometalated Iridium Complexes[J]. J. Am. Chem. Soc., 2018,140(32):10198-10207. doi: 10.1021/jacs.8b04841

    24. [24]

      Ponram M, Balijapalli U, Sambath B, Iyer S K, Kakaraparthi K, Thota G, Bakthavachalam V, Cingaram R, Sung-Ho J, Sundaramur-thy K N. Inkjet-Printed Phosphorescent Iridium(Ⅲ) Complex Based Paper Sensor for Highly Selective Detection of Hg2+[J]. Dyes Pigment., 2019,163:176-182. doi: 10.1016/j.dyepig.2018.11.054

    25. [25]

      Li Z B, Ge Z R, Tong X, Guo L Y, Huo J L, Li D C, Li H Y, Lu A D, Li T Y. Phosphorescent Iridium(Ⅲ) Complexes Bearing L-Alanine Ligands: Synthesis, Crystal Structures, Photophysical Properties, DFT Calculations, and Use as Chemosensors for Cu2+ Ion[J]. Dyes Pigment., 2021,186109016. doi: 10.1016/j.dyepig.2020.109016

    26. [26]

      Liu S J, Wei L W, Guo S, Jiang J Y, Zhang P L, Han J M, Ma Y, Zhao Q. Anionic Iridium(Ⅲ) Complexes and Their Conjugated Polymer Soft Salts for Time-Resolved Luminescent Detection of Intracel-lular Oxygen Levels[J]. Sens. Actuators B, 2018,262:436-443. doi: 10.1016/j.snb.2018.01.201

    27. [27]

      Zhou Y Y, Xie K, Kong L Y, Chen F, Sun D Y. Highly Selective Electrochemiluminescent Probe to Histidine[J]. J. Electroanal. Chem., 2017,799:122-125. doi: 10.1016/j.jelechem.2017.05.054

    28. [28]

      Li Y Y, Wu Y Q, Wu J, Lun W C, Zeng H, Fan X L. A Near-Infrared Phosphorescent Iridium(Ⅲ) Complex for Fast and Time-Resolved Detection of Cysteine and Homocysteine[J]. Analyst, 2020,145(6):2238-2244. doi: 10.1039/C9AN02469G

    29. [29]

      Alam P, Kaur G, Sarmah A, Roy R K, Choudhury A R, Laskar I R. Highly Selective Detection of H+ and OH- with a Single-Emissive Iridium(Ⅲ) Complex: A Mild Approach to Conversion of Non-AIEE to AIEE Complex[J]. Organometallics, 2015,34(18):4480-4490. doi: 10.1021/acs.organomet.5b00447

    30. [30]

      Yu T Z, Wang Y J, Zhu Z Y, Li Y M, Zhao Y L, Liu X X, Zhang H. Two New Phosphorescent Ir(Ⅲ) Complexes as Efficient Selective Sensors for the Cu2+ Ion[J]. Dyes Pigment., 2019,161:252-260. doi: 10.1016/j.dyepig.2018.09.075

    31. [31]

      Shiu H Y, Wong M K, Che C M. "Turn-On"FRET-Based Luminescent Iridium(Ⅲ) Probes for the Detection of Cysteine and Homocysteine[J]. Chem. Commun., 2011,47(15):4367-4369. doi: 10.1039/c0cc04288a

    32. [32]

      Mao Z F, Wang M D, Liu J B, Liu L J, Lee S M Y, Leung C H, Ma D L. A Long Lifetime Switch-On Iridium(Ⅲ) Chemosensor for the Visualization of Cysteine in Live Zebrafish[J]. Chem. Commun., 2016,52(24):4450-4453. doi: 10.1039/C6CC01008C

    33. [33]

      ZHANG S, XUE L S, WU C, ZHENG Y X, ZUO J L. Synthesis and Electroluminescence of Two Red Iridium Complexes[J]. Chinese J. Inorg. Chem., 2014,30(1):134-141.  

    34. [34]

      Zeng X S, Batsanov A S, Bryce M R. Calix[6]arene Derivatives Selectively Functionalized at Alternate Sites on the Smaller Rim with 2-Phenylpyridine and 2-Fluorenylpyridine Substituents to Provide Deep Cavities[J]. J. Org. Chem., 2006,71(26):9589-9594. doi: 10.1021/jo0614341

    35. [35]

      Wong W Y, Ho C L, Gao Z Q, Mi B X, Chen C H, Cheah K W, Lin Z Y. Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphores[J]. Angew. Chem. Int. Ed., 2006,45(46):7800-7803. doi: 10.1002/anie.200602906

    36. [36]

      PAN M, LI S H, CHENG M L, HU Y Y, SHI P, XU J Y, TONG B H, FENG M Q, ZHANG Q F. Effect of Ancillary Ligand on Photoelectric Properties of Cinnoline Iridium Complexes[J]. Chinese J. Inorg. Chem., 2018,34(4):627-632.  

    37. [37]

      Zanoni K P S, Vilela R R C, Silva I D A, Iha N Y M, Eckert H, De Camargo A S S. Photophysical Properties of Ir(Ⅲ) Complexes Immobi-lized in MCM-41 via Templated Synthesis[J]. Inorg. Chem., 2019,58(8):4962-4971. doi: 10.1021/acs.inorgchem.8b03633

    38. [38]

      Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices[J]. Adv. Mater., 2011,23(8):926-952. doi: 10.1002/adma.201003128

    39. [39]

      Wu C, Vellaisamy K, Yang G J, Dong Z Z, Leung C H, Liu J B, Ma D L. A Reaction-Based Luminescent Switch-On Sensor for the Detection of OH- Ions in Simulated Wastewater[J]. Dalton Trans., 2017,46(20):6677-6682. doi: 10.1039/C7DT00633K

    40. [40]

      Han D M, Ji X Q, Zhao L H, Pang C Y. Theoretical Insight on Electronic Structure and Photophysical Properties of a Series of Cyclometalated Iridium(Ⅲ) Complexes Bearing the Substituted Phenylpyrazole with Different Electron-Donating or Electron-Accepting Groups[J]. Photochem. Photobiol. Sci., 2021,20(11):1487-1495. doi: 10.1007/s43630-021-00125-8

    41. [41]

      Datta B K, Thiyagarajan D, Samanta S, Ramesh A, Das G. A Novel Chemosensor with Visible Light Excitability for Sensing Zn2+ in Physiological Medium and in HeLa Cells[J]. Org. Biomol. Chem., 2014,12(27):4975-4982. doi: 10.1039/C4OB00653D

    42. [42]

      Ma Y, Liu S J, Yang H R, Wu Y Q, Sun H H, Wang J X, Zhao Q, Li F Y, Huang W. A Water-Soluble Phosphorescent Polymer for Time-Resolved Assay and Bioimaging of Cysteine/Homocysteine[J]. J. Mater. Chem. B, 2013,1(3):319-329. doi: 10.1039/C2TB00259K

    43. [43]

      Wang H, Hu L, Du W, Tian X H, Hu Z J, Zhang Q, Zhou H P, Wu J Y, Uvdal K, Tian Y P. Mitochondria-Targeted Iridium(Ⅲ) Complexes as Two-Photon Fluorogenic Probes of Cysteine/Homocysteine[J]. Sens. Actuators B, 2018,255:408-415. doi: 10.1016/j.snb.2017.08.074

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    18. [18]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

Metrics
  • PDF Downloads(15)
  • Abstract views(848)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return