Citation: Pei-Pei DING, Ming LI, Yu WU, Jun-Tao YAN, Chun-Lei WANG, Yang WANG, Jia-Wei MAO. Synthesis, Crystal Structure, and DNA Binding/Cleavage Properties of a Macrocyclic Heterobinuclear Zn(Ⅱ)-Ni(Ⅱ) Complex with Pyridylmethyl Pendant-Arms[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1853-1861. doi: 10.11862/CJIC.2022.199 shu

Synthesis, Crystal Structure, and DNA Binding/Cleavage Properties of a Macrocyclic Heterobinuclear Zn(Ⅱ)-Ni(Ⅱ) Complex with Pyridylmethyl Pendant-Arms

  • Corresponding author: Jia-Wei MAO, wyydcc@163.com
  • Received Date: 21 March 2022
    Revised Date: 1 August 2022

Figures(7)

  • A bis-pyridine pendant-armed macrocyclic heterobinuclear Zn(Ⅱ)-Ni(Ⅱ) complex [ZnNi(L)](ClO4)2·H2O (H2L=3, 3'-((ethane-1, 2-diylbis((pyridin-2-ylmethyl)azanediyl))bis(methylene)) bis(2-hydroxy-5-methylbenzaldehyde)) has been obtained and characterized by spectroscopy, elemental analysis and single-crystal X-ray diffraction. The coordination environment of Zn(Ⅱ) and Ni(Ⅱ) can be described as approximately distorted triangular prism and square pyramid, respectively. The Zn—Ni distance bridged by two phenoxide groups is 0.303 63(6) nm. The interaction between the complex and calf thymus DNA (CT-DNA) has been further confirmed by UV-Vis spectrophotometry, viscosity, and cyclic voltammetry study. The complex showed a good binding property to CT-DNA with a binding constant of 1.05×105 L·mol-1. The DNA cleavage activity has also been investigated using agarose gel electrophoresis.
  • 加载中
    1. [1]

      Rad F V, Housaindokht M R, Jalal R, Hosseini H E, Doghaei A V, Goghari S S. Spectroscopic and Molecular Modeling Based Approaches to Study on the Binding Behavior of DNA with a Copper(Ⅱ) Complex[J]. J.Fluoresc., 2014,24:1225-1234. doi: 10.1007/s10895-014-1405-0

    2. [2]

      Navarro M, Cisneros-Fajardo E J, Sierralta A, Fernández-Mestre M, Silva P, Arrieche D, Marchán E. Design of Copper DNA Intercalators with Leishmanicidal Activity[J]. J. Biol. Inorg. Chem., 2003,8:401-408. doi: 10.1007/s00775-002-0427-2

    3. [3]

      Ljubijankic N, Zahirovic A, Turkusic E, Kahrovic E. DNA Binding Properties of Two Ruthenium(Ⅲ) Complexes Containing Schiff Bases Derived from Salicylaldehyde: Spectroscopic and Electrochemical Evidence of CT DNA Intercalation[J]. Croat. Chem. Acta, 2013,86:215-222. doi: 10.5562/cca2216

    4. [4]

      Shahabadi N, Kashanian S, Darabi F. DNA Binding and DNA Cleavage Studies of a Water Soluble Cobalt(Ⅱ) Complex Containing Dinitrogen Schiff Base Ligand: The Effect of Metal on the Mode of Binding[J]. Eur. J. Med. Chem., 2010,45:4239-4245. doi: 10.1016/j.ejmech.2010.06.020

    5. [5]

      Aldulmani S A A. DNA Binding/Cleavage and Biological Activity Studies on the Newly Synthesized 4-[(Furan-2-ylmethylene)amino]-3-[(2-hydroxy-benzylidene) amino]-phenyl-methanone and Some Bivalent Metal(Ⅱ) Chelates[J]. J. Mol. Struct., 2021,1226129356. doi: 10.1016/j.molstruc.2020.129356

    6. [6]

      Asayama S, Nishinohara S, Kawakami H. Zinc-Chelated Poly(1-vinylimidazole) and a Carbohydrate Ligand Polycation Form DNA Ternary Complexes for Gene Delivery[J]. Bioconjugate Chem., 2011,22:1864-1868. doi: 10.1021/bc2003378

    7. [7]

      Jullian V, Sheperd E, Gelbrich T, Hursthouse M B, Kilbrun J D. New Macrobicyclic Receptors for Amino Acids[J]. Tetrahedron Lett., 2000,20(41):3963-3966.

    8. [8]

      Hirohama T, Arii H, Chikira M. EPR Study of the Dynamic Behavior of cis, cis-1, 3, 5-Triaminocyclohexane Cu(Ⅱ) Complex on B-Form DNA-Fibers[J]. J. Inorg. Biochem., 2004,98:1778-1786. doi: 10.1016/j.jinorgbio.2004.07.014

    9. [9]

      Anbu S, Kandaswamy M, Varghese B. Structural, Electrochemical, Phosphate-Hydrolysis, DNA Binding and Cleavage Studies of New Macrocyclic Binuclear Nickel(Ⅱ) Complexes[J]. Dalton Trans., 2010,39:3823-3832. doi: 10.1039/b923078e

    10. [10]

      Hanies R I, Hutchings D R. Synthesis and X-ray Crystal Structure of meso-5, 5, 7, 12, 12, 14-Hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane-1, 8-di-(1-methylnaphthalene)[J]. Molecules, 2003,8:243-250. doi: 10.3390/80200243

    11. [11]

      Kumar A, Vashistha V K, Tevatia P, Singh R. Electrochemical Studies of DNA Interaction and Antimicrobial Activities of Mn, Fe, Co and Ni Schiff Base Tetraazamacrocyclic Complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2017,26:123-133.

    12. [12]

      Pan Z Q, Ding K, Zhou H, Cheng R Q, Chen Y F, Huang Q M. Syntheses, Structures and Properties of Dinickel(Ⅱ) Macrocyclic Complexes with Two 2-Thiophenoethyl Pendant Arms[J]. Polyhedron, 2011,30:2268-2274. doi: 10.1016/j.poly.2011.06.004

    13. [13]

      Ding P P, Wang Y, Kou H Z, Li J F, Shi B X. Synthesis of Heterobi-nuclear Cu-Ni Complex: Structure, CT-DNA Interaction, Hydro-lytic Function and Antibacterial Studies[J]. J. Mol. Struct., 2019,1196:836-843. doi: 10.1016/j.molstruc.2019.06.081

    14. [14]

      Wang Y, W Xia, Mao J W, Zhou H, Pan Z Q. Phosphate Ester Hydrolysis and DNA Binding Capacity of Two New Dinuclear Ni Complexes[J]. J. Mol. Struct., 2013,1036:361-371. doi: 10.1016/j.molstruc.2012.12.002

    15. [15]

      Prabu R, Vijayaraj A, Suresh R, Shenbhagaraman R, Kaviyarasan V, Narayanan V. Electrochemical, Catalytic and Antimicrobial Activity of N-Functionalized Tetraazamacrocyclic Binuclear Nickel(Ⅱ) Complexes[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2011,78:601-606. doi: 10.1016/j.saa.2010.11.029

    16. [16]

      Lachkar M, Guilard R, Attamani A, Cian A D, Fischer J, Weiss R. Synthesis of New Binucleating Cylindrical Macrotricyclic Ligands where Two Cyclam Rings are in a Face-to-Face Conformation. Characterization of Their Dicopper(Ⅱ) and Dinickel(Ⅱ) Complexes[J]. Inorg. Chem., 1998,37(7):1575-1584. doi: 10.1021/ic9708327

    17. [17]

      Golchoubian H, Mardani H R, Bruno G, Rudbari H A. Effect of Alkyl Group on the Structure of Heterodinuclear Zn(Ⅱ)-Cu(Ⅱ) and Zn(Ⅱ)-Ni(Ⅱ) Complexes Derived from Unsymmetrical Phenol-Based Dicompartmental Macro-Acyclic Ligands[J]. J. Iran. Chem. Soc., 2013,10:29-41. doi: 10.1007/s13738-012-0125-0

    18. [18]

      Wolfe A, Shimer G H, Meehan T. Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA[J]. Biochemistry, 1987,26:6392-6393. doi: 10.1021/bi00394a013

    19. [19]

      Rao C R K, Zacharias P S. Studies of Dinuclear Metal Complexes of Macrocyclic Ligands[J]. Polyhedron, 1997,16:1201-1209. doi: 10.1016/S0277-5387(96)00364-6

    20. [20]

      Golchoubian H, Baktash E, Welter R. Synthesis and Characterization of Mono-and Hetero-Dinuclear Complexes with Dicompartmen-tal Macrocyclic Ligand Containing Hexa-and Pentadentate Coordi-nation Sites[J]. Inorg. Chem. Commun., 2007,10:120-124. doi: 10.1016/j.inoche.2006.09.025

    21. [21]

      Golchoubian H, Mardani H R, Bruno G, Rudbari H A. Synthesis of Mono and Heterodinuclear Complexes with Unsymmetrical Phenol-Based Dicompartmental Ligand Containing Hexa and Tetradentate Coordination Sites: An Unusual Methyl Elimination in Coordination Chemistry[J]. Inorg. Chem. Acta, 2012,383:250-256. doi: 10.1016/j.ica.2011.11.018

    22. [22]

      Saghatforoush L, Moeini K, Hosseini-Yazdi S A, Mardani Z, Bakhtiari A, Hajabbas-Farshchi A, Honarvar S, Abdelbaky M S M. Effective Anticancer Activities of an Acyclic Symmetrical Compartmental Schiff Base Ligand and Its Co(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) Complexes Against the Human Leukemia Cell Line K562[J]. Polyhedron, 2019,170(15):312-324.

    23. [23]

      Kou H Z, Wang Y, Ding P P, Cheng X Z, Zhou G W. Synthesis, Crystal Structure, Phosphate Hydrolysis Activity and Antibacterial Activity of Macrocyclic Dinuclear Zn(Ⅱ) Complex with Benzyl Pendant-Arms[J]. J. Mol. Struct., 2020,1216128299. doi: 10.1016/j.molstruc.2020.128299

    24. [24]

      DING C, CHEN Y F, LIU M, SONG H T, ZHOU H, PAN Z Q. Studies on an Unsymmetrical Macrocyclic Dinuclear Ni(Ⅱ) complex Interaction with DNA[J]. Chinese J. Inorg. Chem., 2002,4(28):801-808.  

    25. [25]

      Aidi M, Keypour H, Shooshtari A, Bayat M, Hosseinzadeh L, Rudbari H A, Gable R W. Coordination Chemistry of Some New Mn(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) Macrocyclic Schiff Base Complexes Containing a Homopiperazine Head Unit. Spectral, X-ray Crystal Structural, Theoretical Studies and Anticancer Activity[J]. Inorg. Chim. Acta, 2019,490:294-302. doi: 10.1016/j.ica.2018.12.046

    26. [26]

      Fei B L, Xu W S, Tao H W, Li W, Zhang Y, Long J Y, Liu B Q, Xia B, Sun W Y. Effects of Copper Ions on DNA Binding and Cytotoxic Activity of a Chiral Salicylidene Schiff Base[J]. J. Photochem. Photobiol. B, 2014,132(5):36-44.

    27. [27]

      Chao H, Mei W J, Huang Q W, Ji L N. DNA Binding Studies of Ruthenium(Ⅱ) Complexes Containing Asymmetric Tridentate Ligands[J]. J. Inorg. Biochem., 2002,92:165-170. doi: 10.1016/S0162-0134(02)00543-3

    28. [28]

      Mao J W, Zhou H, Chen Y F, Cheng G Z, Pan Z Q. Synthesis, Structure, DNA Interaction, and Hydrolytic Function toward Bis(pnitrophenyl) Phosphate of a Heterobinuclear Macrocyclic Complex[J]. Transition Met. Chem., 2012,37:385-391. doi: 10.1007/s11243-012-9600-9

    29. [29]

      Sakthivel A, Raman N, Mitu L. DNA Interaction Studies of Pyrazolone-and Diimine-Incorporated Mn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) Complexes: Synthesis, Spectroscopic Characterization, and Antimicrobial Study[J]. Monatsh. Chem., 2013,144:605-620. doi: 10.1007/s00706-012-0857-7

    30. [30]

      Parimala S, Kandaswamy M. Mononuclear, Dinuclear Nickel(Ⅱ) and Heterodinuclear Zn(Ⅱ) Ni(Ⅱ) Complexes as Models for the Active Site of Phosphatase[J]. Inorg. Chem. Commun., 2003,6(9):1252-1254. doi: 10.1016/S1387-7003(03)00243-0

    31. [31]

      Gurumoorthy P, Mahendiran D, Prabhu D, Arulvase C, Rahiman A K. Mixed-Ligand Copper(Ⅱ) Phenolate Complexes: Synthesis, Spectral Characterization, Phosphate-Hydrolysis, Antioxidant, DNA Interaction and Cytotoxic Studies[J]. J. Mol. Struct., 2015,1080:88-98. doi: 10.1016/j.molstruc.2014.09.070

    32. [32]

      Anbu S, Kandaswamy M, Kamalraj S, Muthumarry J, Varghese B. Phosphatase-like Activity, DNA Binding, DNA Hydrolysis, Anticancer and Lactate Dehydrogenase Inhibition Activity Promoting by a New Bis-phenanthroline Dicopper(Ⅱ) Complex[J]. Dalton Trans., 2011,40:7310-7318. doi: 10.1039/c1dt10277j

  • 加载中
    1. [1]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    7. [7]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    8. [8]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    9. [9]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    18. [18]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    19. [19]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    20. [20]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

Metrics
  • PDF Downloads(4)
  • Abstract views(548)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return