Citation: Xin WANG, Meng-Fan WANG, Min-Jie ZHANG, Chen CAO, Zheng NIU, Jian-Ping LANG. Synthesis, Structure, and Luminescence Properties of Coordination Polymers Containing Conjugated Triene Pyridine Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1771-1780. doi: 10.11862/CJIC.2022.197 shu

Synthesis, Structure, and Luminescence Properties of Coordination Polymers Containing Conjugated Triene Pyridine Ligands

Figures(6)

  • Solvothermal reactions of the conjugated triene pyridine ligand 1, 6-bis(4-pyridyl)-l, 3, 5-hexatriene (bphte) and Cd salts in the presence of auxiliary carboxylic acid ligands (2, 5-furandicarboxylic acid (2, 5-H2FDC) and 1, 3, 5-trimesic acid (1, 3, 5-H3BTC)) gave rise to two coordination polymers [Cd(2, 5-FDC)(bphte)(H2O)]n (1) and [Cd(1, 3, 5-HBTC)(bphte)]n (2), respectively. Both complexes were characterized by elemental analysis, IR, single-crystal X-ray diffraction, powder X - ray diffraction, and thermogravimetric analysis. Complex 1 has a 3D framework with an spl topological structure, while complex 2 holds another 3D architecture formed by bridging 1D [Cd2(1, 3, 5-HBTC)2]n chains via bphte ligands. Both complexes exhibited luminescence emission in the solid state. Complex 2 showed an emission quenching phenomenon in Fe3+ aqueous solution, and thus was used as an excellent fluorescence probe to selectively detect Fe3+ in water with a low detection limit of 0.013 μmol·L-1. The above emission quenching mecha-nism is likely due to the overlap between the absorption band of the Fe3+ ion and the excitation band of 2.
  • 加载中
    1. [1]

      Barba-Bon A, Costero A M, Gil S, Parra M, Soto J, Martínez-Máñez R, Sancenón F. A New Selective Fluorogenic Probe for Trivalent Cations[J]. Chem. Commun., 2012,48(24):3000-3002. doi: 10.1039/c2cc17184h

    2. [2]

      Sorace L, Benelli C, Gatteschi D. Lanthanides in Molecular Magnetism: Old Tools in a New Field[J]. Chem. Soc. Rev., 2011,40(6):3092-3104. doi: 10.1039/c0cs00185f

    3. [3]

      Wang H, Wang Y Y, Yang G P, Wang C J, Wen G L, Shi Q Z, Batten S R. A Series of Intriguing Metal-Organic Frameworks with 3, 3', 4, 4'-Benzophenonetetracarboxylic Acid: Structural Adjustment and pH-Dependence[J]. CrystEngComm, 2008,10(11):1583-1594. doi: 10.1039/b805727c

    4. [4]

      Chen C, Zhang X L, Gao P, Hu M. A Water Stable Europium Coordi-nation Polymer as Fluorescent Sensor for Detecting Fe3+, CrO42-, and Cr2O72- Ions[J]. J. Solid. State. Chem., 2018,258:86-92. doi: 10.1016/j.jssc.2017.10.004

    5. [5]

      Zhao T, Hou X D, Xie Y N, Wu L, Wu P. Phosphorescent Sensing of Cr3+ with Protein Functionalized Mn-Doped ZnS Quantum Dots[J]. Analyst, 2013,138(21):6589-6594. doi: 10.1039/c3an01213a

    6. [6]

      Xue H, Tang X J, Wu L Z, Zhang L P, Tung C H. Highly Selective Colorimetric and Electrochemical Pb2+ Detection Based on TTF - π -Pyridine Derivatives[J]. J. Org. Chem., 2005,70(24):9727-9734. doi: 10.1021/jo051091r

    7. [7]

      Demirel G B, Daglar B, Bayindir M. Extremely Fast and Highly Selective Detection of Nitroaromatic Explosive Vapours Using Fluorescent Polymer Thin Films[J]. Chem. Commun., 2013,49(55):6140-6142. doi: 10.1039/c3cc43202e

    8. [8]

      Liu J Q, Luo Z D, Pan Y, Singh A K, Trivedi M, Kumar A. Recent Developments in Luminescent Coordination Polymers: Designing Strategies, Sensing Application and Theoretical Evidences[J]. Coord. Chem. Rev., 2020,406213145. doi: 10.1016/j.ccr.2019.213145

    9. [9]

      Wang Y N, Yu J H, Xu J Q. Porous Cd2+ Supramolecular Network Constructed from 2, 3, 5, 6-Pyridinetetracarboxylhydrazide[J]. J. Cluster Sci., 2018,29(4):633-639. doi: 10.1007/s10876-018-1378-2

    10. [10]

      Wang Y N, Wang S D, Qi H, Wang W J, Hao X X. Two New Zn2+/Cd2+ Metal-Organic Frameworks(MOFs) Constructed from Asymmet-rical Tricarboxylic Acid Ligands[J]. J. Mol. Struct., 2020,1205127620. doi: 10.1016/j.molstruc.2019.127620

    11. [11]

      Wang Y N, Wang R Y, Yang Q F, Yu J H. Acylhydrazidate-Based Porous Coordination Polymers and Reversible I2 Adsorption Properties[J]. Arab. J. Chem., 2020,13(1):2722-2733. doi: 10.1016/j.arabjc.2018.07.004

    12. [12]

      Liang Z B, Qu C, Xia D G, Zou R Q, Xu Q. Atomically Dispersed Metal Sites in MOF-Based Materials for Electrocatalytic and Photocatalytic Energy Conversion[J]. Angew. Chem. Int. Ed., 2018,57(31):9604-9633. doi: 10.1002/anie.201800269

    13. [13]

      Xie K, Fu Q, Webley P A, Qiao G G. MOF Scaffold for a High-Performance Mixed-Matrix Membrane[J]. Angew. Chem. Int. Ed., 2018,57(28):8597-8602. doi: 10.1002/anie.201804162

    14. [14]

      Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'Keeffe M, Yaghi O M. Hydrogen Storage in Microporous Metal-Organic Frameworks[J]. Science, 2003,300(5622):1127-1129. doi: 10.1126/science.1083440

    15. [15]

      Li X Y, Ma L N, Liu Y, Hou L, Wang Y Y, Zhu Z H. Honeycomb Metal-Organic Framework with Lewis Acidic and Basic Bifunctional Sites: Selective Adsorption and CO2 Catalytic Fixation[J]. ACS Appl. Mater. Interfaces, 2018,10(13):10965-10973. doi: 10.1021/acsami.8b01291

    16. [16]

      Wilson M, Barrientos P S N, Stevens P C, Mitchell N L, Oswald G, Nagaraja C M, Badyal J P S. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a[J]. ACS Appl. Mater. Interfaces, 2018,10(4):4057-4065. doi: 10.1021/acsami.7b16029

    17. [17]

      Chen M M, Zhou X, Li H X, Yang X X, Lang J P. Luminescent Two-Dimensional Coordination Polymer for Selective and Recyclable Sensing of Nitroaromatic Compounds with High Sensitivity in Water[J]. Cryst. Growth Des., 2015,15(6):2753-2760. doi: 10.1021/acs.cgd.5b00095

    18. [18]

      Niu Z, Bhagya G W D C, Sun Q, Lan P C, Perman J, Ma J G, Cheng Y C, Aguila B, Ma S Q. Metal -Organic Framework Anchored with a Lewis Pair as a New Paradigm for Catalysis[J]. Chem, 2018,4(11):2587-2599. doi: 10.1016/j.chempr.2018.08.018

    19. [19]

      Niu Z, Cui X L, Pham T, Lan P C, Xing H B, Forrest K A, Wojtas L, Space B, Ma S Q. A Metal-Organic Framework Based Methane Nano-Trap for the Capture of Coal-Mine Methane[J]. Angew. Chem. Int. Ed., 2019,58(30):10138-10141. doi: 10.1002/anie.201904507

    20. [20]

      Zhang L, Jiang K, Yang L F, Li L B, Hu E L, Yang L, Shao K, Xing H B, Cui Y J, Yang Y, Li B, Chen B L, Qian G D. Benchmark C2H2/CO2 Separation in an Ultra -Microporous Metal-Organic Framework via Copper-Alkynyl Chemistry[J]. Angew. Chem. Int. Ed., 2021,60(29):15995-16002. doi: 10.1002/anie.202102810

    21. [21]

      Dong Q B, Zhang X, Liu S, Lin R B, Guo Y, Ma Y, Yonezu A, Krishna R, Liu G P, Duan J G, Matsuda R, Jin W, Chen B L. Tuning Gate-Opening of a Flexible Metal -Organic Framework for Ternary Gas Sieving Separation[J]. Angew. Chem. Int. Ed., 2020,59(50):22756-22762. doi: 10.1002/anie.202011802

    22. [22]

      Oveisi M, Asli M A, Mahmoodi N M. MIL-Ti Metal-Organic Frameworks(MOFs) Nanomaterials as Superior Adsorbents: Synthesis and Ultrasound-Aided Dye Adsorption from Multicomponent Wastewater Systems[J]. J. Hazard. Mater., 2018,347:123-140. doi: 10.1016/j.jhazmat.2017.12.057

    23. [23]

      Zhang M, Wang L W, Zeng T Y, Shang Q G, Zhou H, Pan Z Q, Cheng Q R. Two Pure MOF -Photocatalysts Readily Prepared for the Degradation of Methylene Blue Dye under Visible Light[J]. Dalton Trans., 2018,47(12):4251-4258. doi: 10.1039/C8DT00156A

    24. [24]

      Park J, Oh M. Construction of Flexible Metal-Organic Framework(MOF) Papers through MOF Growth on Filter Paper and Their Selective Dye Capture[J]. Nanoscale, 2017,9(35):12850-12854. doi: 10.1039/C7NR04113F

    25. [25]

      Lin R B, Liu S Y, Ye J W, Li X Y, Zhang J P. Photoluminescent Metal-Organic Frameworks for Gas Sensing[J]. Adv. Sci., 2016,3(7)1500434. doi: 10.1002/advs.201500434

    26. [26]

      Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. An Updated Roadmap for the Integration of Metal-Organic Frameworks with Electronic Devices and Chemical Sensors[J]. Chem. Soc. Rev., 2017,46(11):3185-3241. doi: 10.1039/C7CS00122C

    27. [27]

      Xia T F, Cui Y J, Yang Y, Qian G D. A Luminescent Ratiometric Thermometer Based on Thermally Coupled Levels of a Dy-MOF[J]. J. Mater. Chem. C, 2017,5(21):5044-5047. doi: 10.1039/C7TC00921F

    28. [28]

      Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P N, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging[J]. Nat. Mater., 2010,9(2):172-178. doi: 10.1038/nmat2608

    29. [29]

      Kumar G, Guda R, Husain A, Bodapati R, Das S K. A Functional Zn Metallacycle Formed from an N-Heterocyclic Carbene Precursor: A Molecular Sensor for Selective Recognition of Fe3+ and IO4-Ions[J]. Inorg. Chem., 2017,56(9):5017-5025. doi: 10.1021/acs.inorgchem.7b00098

    30. [30]

      Wu S Y, Min H, Shi W, Cheng P. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors[J]. Adv. Mater., 2020,32(3)1805871. doi: 10.1002/adma.201805871

    31. [31]

      Guan L L, Jiang Z W, Cui Y J, Yang Y, Yang D R, Qian G D. An MOF-Based Luminescent Sensor Array for Pattern Recognition and Quantification of Metal Ions[J]. Adv. Opt. Mater., 2021,9(9)2002180. doi: 10.1002/adom.202002180

    32. [32]

      Zhou X, Shi Y X, Cao C, Ni C Y, Ren Z G, Young D J, Lang J P. Nickel -Based Two-Dimensional Coordination Polymer Displaying Superior Capabilities for Selective Sensing of Cr Ions in Water[J]. Cryst. Growth Des., 2019,19(6):3518-3528. doi: 10.1021/acs.cgd.9b00376

    33. [33]

      Čarsky P, Hünig S, Stemmler I, Scheutzow D. Über Zweistufige Redoxsysteme, Ⅹ Ⅹ Ⅶ. Vinyloge Bipyridyle und Bichinolyle; Syn-thesen und UV/Vis-Spektren. Liebigs Ann. Chem., 1980(2): 291 -304
      Čarsky P, Hünig S, Stemmler I, Scheutzow D. On Two-Stage Redox Systems, ⅩⅩⅦ. Vinylogous Bipyridyls and Biquinolyls; Syntheses and UV/Vis Spectra. Liebigs Ann. Chem., 1980(2): 291-304

    34. [34]

      Sheldrick G M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.

    35. [35]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015.

    36. [36]

      Pahari G, Bhattacharya B, Reddy C M, Ghoshal D. A Reversible Photochemical Solid-State Transformation in an Interpenetrated 3D Metal-Organic Framework with Mechanical Softness[J]. Chem. Commun., 2019,55(83):12515-12518. doi: 10.1039/C9CC04765D

    37. [37]

      Lv R, Wang J Y, Zhang Y P, Li H, Yang L Y, Liao S Y, Gu W, Liu X. An Amino-Decorated Dual-Functional Metal-Organic Framework for Highly Selective Sensing of Cr and Cr Ions and Detection of Nitroaromatic Explosives[J]. J. Mater. Chem. A, 2016,4(40):15494-15500. doi: 10.1039/C6TA05965A

    38. [38]

      Wen L L, Zheng X F, Lv K L, Wang C G, Xu X Y. Two Amino-Decorated Metal-Organic Frameworks for Highly Selective and Quantitatively Sensing of Hg and Cr in Aqueous Solution[J]. Inorg. Chem., 2015,54(15):7133-7135. doi: 10.1021/acs.inorgchem.5b00098

    39. [39]

      Donges D, Nagle J K, Yersin H. Intraligand Charge Transfer in Pt(qol)2[J]. Characterization of Electronic States by High-Resolution Shpol'skii Spectroscopy. Inorg. Chem., 1997,36(14):3040-3048.

    40. [40]

      Vogler A, Kunkely H. Ligand-to-Ligand and Intraligand Charge Transfer and Their Relation to Charge Transfer Interactions in Organic Zwitterions[J]. Coord. Chem. Rev., 2007,251(3):577-583.

    41. [41]

      CHEN H X, LIU C Y, ZHOU X, CHEN M M, NI C Y, LANG J P. One -Dimensional Coordination Polymers Based on a Tripyridine Olefin Ligand: Synthesis, Structures and Photoelectronic Properties[J]. Chinese J. Inorg. Chem., 2019,35(11):2038-2044. doi: 10.11862/CJIC.2019.228 

    42. [42]

      LIANG C X, LIU Z, LIANG Q Q, TANG Q, LI H Y, ZHANG S F. Syntheses, Crystal Structures and Properties of Bis-Schiff Bases Containing Carboxyl and Their Copper Complexes[J]. Chinese J. Inorg. Chem., 2019,35(7):1130-1138.  

    43. [43]

      Gu T Y, Dai M, Young D J, Ren Z G, Lang J P. Luminescent Zn Coordination Polymers for Highly Selective Sensing of Cr and Cr in Water[J]. Inorg. Chem., 2017,56(8):4668-4678. doi: 10.1021/acs.inorgchem.7b00311

    44. [44]

      Wang J, Lu L, Ding Q J, Zhang S L, Wang J, Singh A, Kumar A, Ma A Q. Multi -Responsive Luminescent 2D Zn-Based Coordination Polymer for Detection of Trinitrophenol and Fe3+[J]. J. Coord. Chem., 2020,73(2):307-316. doi: 10.1080/00958972.2020.1720002

    45. [45]

      Hu F L, Shi Y X, Chen H H, Lang J P. A Zn Coordination Polymer and Its Photocycloaddition Product: Syntheses, Structures, Selective Luminescence Sensing of Iron Ions and Selective Absorption of Dyes[J]. Dalton Trans., 2015,44(43):18795-18803. doi: 10.1039/C5DT03094C

    46. [46]

      Li W X, Gu J H, Li H X, Dai M, Young D J, Li H Y, Lang J P. Post-Synthetic Modification of a Two-Dimensional Metal-Organic Framework via Photodimerization Enables Highly Selective Luminescent Sensing of Aluminum[J]. Inorg. Chem., 2018,57(21):13453-13460. doi: 10.1021/acs.inorgchem.8b02049

    47. [47]

      Das D, Biradha K. Luminescent Coordination Polymers of Naphthalene Based Diamide with Rigid and Flexible Dicarboxylates: Sensing of Nitro Explosives, Fe Ion, and Dyes[J]. Cryst. Growth Des., 2018,18(6):3683-3692. doi: 10.1021/acs.cgd.8b00498

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    4. [4]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(13)
  • Abstract views(797)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return