Citation: Zeng-Xue WANG, Yan LIU, Pan ZHAO, Xun-Di ZHANG, Yi-Ming YANG, Peng SUN, Xiu-Yun ZHANG, Yu FENG, Ting-Ting ZHENG, Chen CHEN, Wei LI. Near-Infrared Photothermal Conversion Agent Oxygen-Deficient Molybdenum Dioxide: Preparation and Application in Photothermal Therapy[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1739-1751. doi: 10.11862/CJIC.2022.195 shu

Near-Infrared Photothermal Conversion Agent Oxygen-Deficient Molybdenum Dioxide: Preparation and Application in Photothermal Therapy

Figures(11)

  • In this paper, molybdenum dioxide (MoO2) nanoparticles were prepared by hydrothermal synthesis method using molybdenum pentachloride (MoCl5) as molybdenum source and polyvinylpyrrolidone (PVP) as a structural guiding agent as well as reducing agent. The results from X - ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis-near-infrared (UV-Vis-NIR) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron spin resonance spectroscopy (EPR) illustrated that the diameter of the prepared MoO2 nanoparticles were about 18 nm. The particle size was uniform with abundant oxygen defects, and had good light absorption ability in the near-infrared region of 650-1 100 nm. The photothermal test demonstrated that the 100 μg·mL-1 aqueous solution of the material heated up 31.5 ℃ within 10 min, the photothermal conversion rate was up to 67.9% with excellent photothermal stability. Cytotoxicity test showed that the nanomaterial had no toxicity to cells, meanwhile possessing an obvious photothermal killing effect on hepatoma cells.
  • 加载中
    1. [1]

      He J S, Liu S J, Zhang Y R, Chu X D, Lin Z B, Zhao Z, Qiu S H, Guo Y G, Ding H, Pan Y L, Pan J H. The Application of and Strategy for Gold Nanoparticles in Cancer Immunotherapy[J]. Front. Pharmacol., 2021,12687399. doi: 10.3389/fphar.2021.687399

    2. [2]

      Liao S N, Yue W, Cai S N, Tang Q, Lu W T, Huang L X, Qi T T, Liao J F. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective[J]. Front. Pharmacol., 2021,12664123. doi: 10.3389/fphar.2021.664123

    3. [3]

      Sangnier A O, Aufaure R, Cheong S, Motte L, Palpant B, Tilley R, Guénin E, Wilhelm C, Lalatonne Y. Raspberry-like Small Multicore Gold Nanostructures for Efficient Photothermal Conversion in the First and Second Near-Infrared Windows[J]. Chem. Commun., 2019,55:4055-4058. doi: 10.1039/C8CC09476D

    4. [4]

      Ma Q X, Cheng L, Gong F, Dong Z L, Liang C, Wang M Y, Feng L Z, Li Y G, Liu Z, Li C, He L. Platinum Nanoworms for Imaging-Guided Combined Cancer Therapy in the Second Near-Infrared Window[J]. J. Mater. Chem. B, 2018,6:5069-5079.

    5. [5]

      Jin Z K, Duo Y H, Li Y, Qiu M, Jiang M N, Liu Q, Zhao P H, Yang T, Liang W Y, Zhang H, Cao Y H, He Q J. A Novel NIR-Responsive CO Gas-Releasing and Hyperthermia-Generating Nanomedicine Provides a Curative Approach for Cancer Therapy[J]. Nano Today, 2021,38101197. doi: 10.1016/j.nantod.2021.101197

    6. [6]

      Yang X Y, Liu R G, Zhong Z H, Huang H, Shao J J, Xie X J, Zhang Y W, Wang W J, Dong X C. Platinum Nanoenzyme Functionalized Black Phosphorus Nanosheets for Photothermal and Enhanced-Photodynamic Therapy[J]. Chem. Eng. J., 2021,409127381. doi: 10.1016/j.cej.2020.127381

    7. [7]

      Zhao P Q, Xu Y L, Ji W, Zhou S Y, Li L F, Qiu L H, Qian Z Z, Wang X H, Zhang H L. Biomimetic Black Phosphorus Quantum Dots-Based Photothermal Therapy Combined with Anti-PD-L1 Treatment Inhibits Recurrence and Metastasis in Triple-Negative Breast Cancer[J]. J. Nanobiotechnol., 2021,19(1)181. doi: 10.1186/s12951-021-00932-2

    8. [8]

      Liu S, Pan X T, Liu H Y. Two-Dimensional Nanomaterials for Photothermal Therapy[J]. Angew. Chem. Int. Ed., 2020,59(15):5890-5900. doi: 10.1002/anie.201911477

    9. [9]

      Liang C, Diao S, Wang C, Gong H, Liu T, Hong G S, Shi X Z, Dai H J, Liu Z. Tumor Metastasis Inhibition by Imaging-Guided Photothermal Therapy with Single-Walled Carbon Nanotubes[J]. Adv. Mater., 2014,26(32):5646-5652.

    10. [10]

      Zhang D Y, Zheng Y, Tan C P, Sun J H, Zhang W, Ji L N, Mao Z W. Graphene Oxide Decorated with Ru -Polyethylene Glycol Complex for Lysosome-Targeted Imaging and Photodynamic/Photothermal Therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(8):6761-6771.

    11. [11]

      Battah S, Hider R C, MacRobert A J, Dobbin P S, Zhou T. Hydroxypyridinone and 5-Aminolaevulinic Acid Conjugates for Photodynamic Therapy[J]. J. Med. Chem., 2017,60(8):3498-3510.

    12. [12]

      Yin W Y, Bao T, Zhang X, Gao Q, Yu J, Dong X H, Yan L, Gu Z J, Zhao Y L. Biodegradable MoOx Nanoparticles with Efficient Near-Infrared Photothermal and Photodynamic Synergetic Cancer Therapy at the Second Biological Window[J]. Nanoscale, 2018,10(3):1517-1531.

    13. [13]

      Guo Y X, Li Y, Zhang W L, Zu H R, Yu H H, Li D L, Xiong H L, Hormel T T, Hu C F, Guo Z Y, Liu Z M. Insights into the Deep-Tissue Photothermal Therapy in Near -Infrared Ⅱ Region Based on Tumor-Targeted MoO2 Nanoaggregates[J]. Sci. China Mater., 2020,63(6):1085-1098.

    14. [14]

      Lei T, Song Y L, Liu J, Wang X J, Liu Z G, Huo M X, Wang Y, Sui Y. Tailoring Physical Properties of WS2 Nanosheets by Defects Control[J]. Nanotechnology, 2021,32035601.

    15. [15]

      Chen S H, Xiao Y, Wang Y H, Hu Z F, Zhao H, Xie W. A Facile Approach to Prepare Black TiO2 with Oxygen Vacancy for Enhancing Photocatalytic Activity[J]. Nanomaterials, 2018,8(4):245-255.

    16. [16]

      Wang X C, Ma B, Xue J M, Wu J F, Chang J, Wu C T. Defective Black Nano-Titania Thermogels for Cutaneous Tumor-Induced Therapy and Healing[J]. Nano Lett., 2019,19(3):2138-2147.

    17. [17]

      Han H S, Choi K Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications[J]. Biomedicines, 2021,9(3)305.

    18. [18]

      Wang Y F, Meng H M, Li Z H. Near-Infrared Inorganic Nanomaterial-Based Nanosystems for Photothermal Therapy[J]. Nanoscale, 2021,13(19):8751-8872.

    19. [19]

      Wang Q, Dai Y N, Xu J Z, Cai J, Niu X R, Zhang L, Chen R F, Shen Q M, Huang W, Fan Q L. All-In-One Phototheranostics: Single Laser Triggers NIR-Ⅱ Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy[J]. Adv. Funct. Mater., 2019,29(31)1901480.

    20. [20]

      Gai S L, Yang G X, Yang P P, He F, Lin J, Jin D Y, Xing B G. Recent Advances in Functional Nanomaterials for Light-Triggered Cancer Therapy[J]. Nano Today, 2018,19:146-187.

    21. [21]

      De Castro I A, Datta R S, Ou J Z, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-Zadeh K. Molybdenum Oxides-From Fundamentals to Functionality[J]. Adv. Mater., 2017,29(40)1701619.

    22. [22]

      Feng Y, Liu H. One-step for In-Situ Etching and Reduction to Construct Oxygen Vacancy Modified MoO2/Reduced Graphene Oxide Nanotubes for High Performance Lithium-Ion Batteries[J]. Appl. Surf. Sci., 2021,538(15)147992.

    23. [23]

      Withanage S S, Charles V, Chamlagain B, Wheeler R, Mou S, Khondaker S I. Synthesis of Highly Dense MoO2/MoS2 Core-Shell Nanoparticles via Chemical Vapor Deposition[J]. Nanotechnology, 2021,32(5)055605.

    24. [24]

      Zhan Y, Liu Y L, Zu H R, Guo Y X, Wu S S, Yang H Y, Liu Z M, Lei B F, Zhuang J L, Zhang X J, Huang D, Hu C F. Phase-Controlled Synthesis of Molybdenum Oxide Nanoparticles for Surface Enhanced Raman Scattering and Photothermal Therapy[J]. Nanoscale, 2018,10(13):5997-6004.

    25. [25]

      Yu H H, Zhuang Z F, Li D L, Guo Y X, Li Y, Zhong H Q, Xiong H L, Liu Z M, Guo Z Y. Photo-Induced Synthesis of Molybdenum Oxide Quantum Dots for Surface-Enhanced Raman Scattering and Photothermal Therapy[J]. J. Mater Chem. B, 2020,8(5):1040-1048.

    26. [26]

      Li Y, Cheng J J, Liu Y Z, Liu P Z, Cao W Q. Manipulation of Surface Plasmon Resonance in Sub-stoichiometry Molybdenum Oxide Nanodots through Charge Carrier Control Technique[J]. J. Phys. Chem. C, 2017,121(9):5208-5214.

    27. [27]

      Song G S, Hao J L, Liang C, Liu T, Gao M, Cheng L, Hu J Q, Liu Z. Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform[J]. Angew. Chem. Int. Ed., 2016,55(6):2122-2126.

    28. [28]

      DING D D. Perparation and Photothemal Applications of Reducted State Molybdenum Oxide. Haerbin: Harbin Institute of Technology, 2017: 1-60

    29. [29]

      ZU H R. Synthesis and Morphology Control of MoO3-x Nanomaterials for Phothermal Therapy of Cancer. Taiyuan: Taiyuan University of Technology, 2019: 1-50

    30. [30]

      Chen J H, Li Q H, Wang F, Yang M, Xie L, Zeng X. Biosafety, Nontoxic Nanoparticles for VL-NIR Photothermal Therapy Against Oral Squamous Cell Carcinoma[J]. ACS Omega, 2021,6(17):11240-11247.

    31. [31]

      LI H. Fabrication of Plasmonic Oxides Quantum Dots and Its Application. Zhengzhou: Zhengzhou University, 2019: 1-75

    32. [32]

      Zhou Z, Wang X W, Zhang H, Huang H X, Sun L A, Ma L, Du Y H, Pei C J, Zhang Q H, Li H, Ma L F, Gu L, Liu Z, Cheng L, Tan C L. Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy[J]. Small, 2021,17(12)2007486.

    33. [33]

      Roper D K, Ahn W, Hoepfner M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles[J]. J. Phys. Chem. C, 2007,111(9):3636-3641.

    34. [34]

      Zhang B Y, Zavabeti A, Chrimes A F, Haque F, O'Dell L A, Khan H, Syed N, Datta R, Wang Y C, Chesman A S R, Daeneke T, Kalantar-Zadeh K, Ou J Z. Degenerately Hydrogen Doped Molybdenum Oxide Nanodisks for Ultrasensitive Plasmonic Biosensing[J]. Adv. Funct. Mater., 2018,28(11)1706006.

    35. [35]

      Sinaim H, Dong J H, Lee J S, Phuruangrat A, Thongtem S, Thongtem T. Free-Polymer Controlling Morphology of α-MoO3 Nanobelts by a Facile Hydrothermal Synthesis, Their Electrochemistry for Hydrogen Evolution Reactions and Optical Properties[J]. J. Alloy. Compd., 2012,516:172-178.

    36. [36]

      Liu X, Swihart M T. Heavily-Doped Colloidal Semiconductor and Metal Oxide Nanocrystals: An Emerging New Class of Plasmonic Nanomaterials[J]. Chem. Soc. Rev., 2014,43(11):3908-3920.

    37. [37]

      CHEN Y H, RENG Z R, CHEN Z P, WANG J X, NI M J, LIU S Y, BAO W T. Preparation and the Surface Properties of PLA Grafted with PVP Induced by Gamma Ray Irradiation[J]. Fine Chemicals, 2014,31(4):418-421.  

    38. [38]

      LIU Y B, YU W S, WANG J X, DONG X T, FU Z D, LIU G X. Application of Bismuth-Based Nanomaterials in Imaging Diagnosis and Therapy for Cancer[J]. Chinese J. Inorg. Chem., 2021,37(1):1-15.  

    39. [39]

      Lei P P, An R, Zhang P, Yao S, Song S Y, Dong L L, Xu X, Du K M, Feng J, Zhang H J. Ultrafast Synthesis of Ultrasmall Poly(vinylpyrrolidone) -Protected Bismuth Nanodots as a Multifunctional Theranostic Agent for In Vivo Dual-Modal CT/Photothermal-Imaging Guided Photothermal Therapy[J]. Adv. Funct. Mater., 2017,27(35)1702018.

    40. [40]

      Ding Y W, Huang R T, Luo L R Q, Guo W W, Zhu C Y, Shen X C. Full-Spectrum Responsive WO3 -x@HA Nanotheranostics for NIR-Ⅱ Photoacoustic Imaging-Guided PTT/PDT/CDT Synergistic Therapy[J]. Inorg. Chem. Front., 2021,8(3):636-646.

    41. [41]

      Dong Y S, Dong S M, Wang Z, Feng L L, Sun Q Q, Chen G Y, He F, Liu S K, Li W T, Yang P P. Multimode Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Nanoagent with a Tumor Microenvironment Responded Effect[J]. ACS Appl. Mater. Interfaces, 2020,12(47):52479-52491.

    42. [42]

      Zhu X F, Gong Y C, Liu Y A, Yang C H, Wu S J, Yuan G L, Guo X, Liu J, Qin X Y. Ru@CeO2 Yolk Shell Nanozymes: Oxygen Supply In Situ Enhanced Dual Chemotherapy Combined with Photothermal Therapy for Orthotopic/Subcutaneous Colorectal Cancer[J]. Biomaterials, 2020,242119923.

    43. [43]

      Jia J, Liu G Y, Xu W J, Tian X L, Li S B, Han F, Feng Y H, Dong X C, Chen H Y. Fine-Tuning the Homometallic Interface of Au-On-Au Nanorods and Their Photothermal Therapy in NIR-Ⅱ Window[J]. Angew. Chem. Int. Ed., 2020,59(34):14443-14448.

    44. [44]

      Li S S, Gu K, Wang H, Xu B L, Li H W, Shi X H, Huang Z J, Liu H Y. Degradable Holey Palladium Nanosheets with Highly Active 1D Nanoholes for Synergetic Phototherapy of Hypoxic Tumors[J]. J. Am. Chem. Soc., 2020,142(12):5649-5656.

    45. [45]

      Liu Y N, Li F, Guo Z R, Xiao Y Q, Zhang Y L, Sun X Y, Zhe T T, Cao Y Y, Wang L, Lu Q Y, Wang J H. Silver Nanoparticle-Embedded Hydrogel as a Photothermal Platform for Combating Bacterial Infections[J]. Chem. Eng. J., 2020,382122990.

    46. [46]

      Tang W T, Dong Z L, Zhang R, Yi X, Yang K, Jin M L, Yuan C, Xiao Z D, Liu Z, Cheng L. Multifunctional Two-Dimensional Core-Shell MXene@Gold Nanocomposites for Enhanced Photo-Radio Combined Therapy in the Second Biological Window[J]. ACS Nano, 2019,13(1):284-294.

    47. [47]

      Wang L, Xu S M, Yang X T, He S, Guan S Y, Waterhouse G I N, Zhou S Y. Exploiting Co Defects in CoFe-Layered Double Hydroxide (CoFe -LDH) Derivatives for Highly Efficient Photothermal Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2020,12(49):54916-54926.

    48. [48]

      Bai Y L, Zhao J J, Wang S L, Lin T R, Ye F G, Zhao S L. Carbon Dots with Absorption Red-Shifting for Two -Photon Fluorescence Imaging of Tumor Tissue pH and Synergistic Phototherapy[J]. ACS Appl. Mater. Interfaces, 2021,13:35365-35375.

    49. [49]

      Lu J Y, Wang K L, Lei W, Mao Y L, Di D H, Zhao Q F, Wang S L. Polydopamine-Carbon Dots Functionalized Hollow Carbon Nanoplatform for Fluorescence-Imaging and Photothermal-Enhanced Thermochemotherapy[J]. Mater. Sci. Eng. C, 2021,122111908.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    17. [17]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(19)
  • Abstract views(1854)
  • HTML views(556)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return