Citation: Xue-Zhi GAO, Huan SONG, Bing LI, Rui WANG, Xiao-Shuang ZHU, Xiao-Yan TIAN. Synthesis, Crystal Structure, and Catalytic Performance of a Cd(Ⅱ) Complex Based on 3-Carboxyl-5-ammino-1, 2, 4-triazole[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1808-1816. doi: 10.11862/CJIC.2022.193 shu

Synthesis, Crystal Structure, and Catalytic Performance of a Cd(Ⅱ) Complex Based on 3-Carboxyl-5-ammino-1, 2, 4-triazole

  • Corresponding author: Bing LI, nxdaxue@126.com
  • Received Date: 23 December 2021
    Revised Date: 28 June 2022

Figures(6)

  • Triazole -derived energetic complexes have paid significant attention in the field of energetic materials. An energetic complex [Cd(Hatzc)2(H2O)] (LH1) (H2atzc=3-carboxyl-5-amino-1, 2, 4-triazole) was synthesized and fully characterized by single crystal X-ray diffraction, elemental analysis, infrared spectral analysis, and thermogravimetric analysis. LH1 belongs to the monoclinic system, space group P21/n. The structural analyses illustrate that LH1 exhibits a 1D chain, which is linked by hydrogen-bonding interactions to give a 3D supramolecular architecture. Complex LH1 had high detonation velocity (D=10.4 km·s-1), detonation pressure (p =55.2 GPa), energy of detonation (16.51 kJ·g-1), and density (2.363 g·cm-3), which were superior to most of the energetic compounds. The impact sensitivity (> 40 J) and friction sensitivity (> 360 N) reveal that LH1 is less sensitive to impact and friction. The results of the catalytic thermal decomposition of ammonium perchlorate (AP) show that LH1 decreased the higher thermal decomposition temperature of AP by 38 ℃ and increased the exothermic quantity of decomposition by 0.46 kJ·g-1 in a short time, which showed a good catalytic effect on the thermal decomposition of AP.
  • 加载中
    1. [1]

      Bennion J C, Matzger A J. Development and Evolution of Energetic Cocrystals[J]. Acc. Chem. Res., 2021,54(7):1699-1710. doi: 10.1021/acs.accounts.0c00830

    2. [2]

      Ma X H, Cai C, Sun W J, Song W M, Ma Y L, Liu X Y, Xie G, Chen S P, Gao S L. Enhancing Energetic Performance of Multinuclear Ag(Ⅰ)-Cluster MOF -Based High-Energy-Density Materials by Thermal Dehy-dration[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9233-9238. doi: 10.1021/acsami.9b00834

    3. [3]

      ZHENG H, JIAO Y, FENG S S. Synthesis, Structure, Luminescence, Photocatalytic and Magnetic Properties of a Neodymium Complex Constructed from Biphenyl-3, 4', 5-tricarboxylic Acid[J]. Chinese J. Inorg. Chem., 2021,37(9):1691-1699.  

    4. [4]

      Li Y N, Wang B, Chang P, Hu J J, Chen T, Wang Y L, Wang B Z. Novel Catenated N6 Energetic Compounds Based on Substituted 1, 2, 4-Triazoles: Synthesis, Structures and Properties[J]. RSC Adv., 2018,8(25):13755-13763. doi: 10.1039/C8RA02491J

    5. [5]

      Yin P, Zhang J H, He C L, Parrish D A, Shreeve J M. Polynitro-Substituted Pyrazoles and Triazoles as Potential Energetic Materials and Oxidizers[J]. J. Mater. Chem. A, 2014,2(9):3200-3208. doi: 10.1039/c3ta15057g

    6. [6]

      Jiao F B, Xiong Y, Li H Z, Zhang C Y. Alleviating the Energy & Safety Contradiction to Construct New Low Sensitivity and Highly Energetic Materials through Crystal Engineering[J]. CrystEngComm, 2018,20(13):1757-1768. doi: 10.1039/C7CE01993A

    7. [7]

      Klapötke T M, Krumm B, Unger C C. Energetic Metal and Nitrogen-Rich Salts of the Pentaerythritol Tetranitrate Analogue Pentaerythritol Tetranitrocarbamate[J]. Inorg. Chem., 2019,58(4):2881-2887. doi: 10.1021/acs.inorgchem.8b03540

    8. [8]

      Tang Y X, He C L, Imler G H, Parrish D A, Shreeve J M. Aminonitro Groups Surrounding a Fused Pyrazolotriazine Ring: A Superior Thermally Stable and Insensitive Energetic Material[J]. ACS Appl. Energy Mater., 2019,2(3):2263-2267. doi: 10.1021/acsaem.9b00049

    9. [9]

      Shang Y, Yu Z H, Huang R K, Chen S L, Liu D X, Chen X X, Zhang W X, Chen X M. Metal-Free Hexagonal Perovskite High-Energetic Materials with NH3OH+/NH2NH3+ as B-Site Cations[J]. Engineering, 2020,6(9):1013-1018. doi: 10.1016/j.eng.2020.05.018

    10. [10]

      Wang S, Wang Q Y, Feng X, Wang B, Yang L. Explosives in the Cage: Metal-Organic Frameworks for High-Energy Materials Sensing and Desensitization[J]. Adv. Mater., 2017,29(36)1701898. doi: 10.1002/adma.201701898

    11. [11]

      LI Y, ZHUANG Y F, ZHANG Y L, FENG A S, ZOU X C. Syntheses, Crystal Structures, Luminescence and Catalytic Activity of Manganese and Cadmium Coordination Polymers Based on 2, 3-Dihydroxy-terephthalic Acid[J]. Chinese J. Inorg. Chem., 2021,37(6):1135-1142. doi: 10.11862/CJIC.2021.132

    12. [12]

      Li B, Wei Q, Yang Q, Chen S P, Gao S L. Synthesis, Structure, and Thermophysical Properties of an Energetic Complex Co(3-(2-pyridyl)-5-(3'-pyridyl)-1H-1, 2, 4-triazole)3·H2O[J]. J. Chem. Eng. Data, 2011,56(7):3043-3046. doi: 10.1021/je2000364

    13. [13]

      Gao H, Li B, Jin X D, Bi S X, Tian X Y, Liu W Y. Catalytic Kinetic on the Thermal Decomposition of Ammonium Perchlorate with a New Energetic Complex Based on 3, 5-Bis(3-pyridyl)-1H-1, 2, 4-triazole[J]. Chin. J. Struct. Chem., 2016,35(12):1902-1911.

    14. [14]

      Li B, Song H, Wu H P, Wang J K, Tian X Y, Ma X X. A New Oxygen-Rich and Poly-Nitrogen Energetic Complex: Synthesis, Properties of High Energy Materials and Catalytic Decomposition of Ammonium Perchlorate[J]. J. Coord. Chem., 2021,74(7):1159-1167. doi: 10.1080/00958972.2021.1892663

    15. [15]

      Li B, Han J, Yang Q F, Tian X Y, Chen X Y. A New Energetic Complex [Co(2, 4, 3-tpt)2(H2O)2]·2NO3: Synthesis, Structure, and Catalytic Thermal Decomposition for Ammonium Perchlorate[J]. Z. Anorg. Allg. Chem., 2015,641(14):2371-2375. doi: 10.1002/zaac.201500249

    16. [16]

      Liu L L, Li J, Zhang L Y, Tian S Y. Effects of Magnesium-Based Hydrogen Storage Materials on the Thermal Decomposition, Burning Rate, and Explosive Heat of Ammonium Perchlorate-Based Composite Solid Propellant[J]. J. Hazard. Mater., 2018,342:477-481. doi: 10.1016/j.jhazmat.2017.08.055

    17. [17]

      Wei T T, Zhang Y, Xu K Z, Ren Z Y, Gao H X, Zhao F Q. Catalytic Action of Nano Bi2WO6 on Thermal Decompositions of AP, RDX, HMX and Combustion of NG/NC Propellant[J]. RSC Adv., 2015,5(86):70323-70328. doi: 10.1039/C5RA13257F

    18. [18]

      Yaman H, Çelik V, Değirmenci E. Experimental Investigation of the Factors Affecting the Burning Rate of Solid Rocket Propellants[J]. Fuel, 2014,115:794-803. doi: 10.1016/j.fuel.2013.05.033

    19. [19]

      Li B, Shen D, Chen X Y, Li T, Ren J L, Hu Q L, Liu W Y. A New 1-D Energetic Complex [Cu(2, 3'-bpt)2·H2O]n: Synthesis, Structure, and Catalytic Thermal Decomposition for Ammonium Perchlorate[J]. J. Coord. Chem., 2014,67(11):2028-2038. doi: 10.1080/00958972.2014.934230

    20. [20]

      Sheldrick G M. SHELXTL/PC, Version 6.12 for Windows XP. Bruker AXS Inc., Madison, Wisconsin, USA, 2001.

    21. [21]

      Sheldrick G M. SHELXL-2014, Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 2014.

    22. [22]

      Yang Q, Ge J, Gong Q B, Song X X, Zhao J W, Wei Q, Xie G, Chen S P, Gao S L. Two Energetic Complexes Incorporating 3, 5-Dinitro-benzoic Acid and Azole Ligands: Microwave-Assisted Synthesis, Favorable Detonation Properties, Insensitivity and Effects on the Thermal Decomposition of RDX[J]. New J. Chem., 2016,40(9):7779-7786. doi: 10.1039/C6NJ00197A

    23. [23]

      Mohamadnia Z, Zohuriaan-Mehr M J, Kabiri K, Razavi-Nouri M. Tragacanth Gum-Graft-Polyacrylonitrile: Synthesis, Characterization and Hydrolysis[J]. J. Polym. Res., 2008,15(3):173-180. doi: 10.1007/s10965-007-9156-0

    24. [24]

      ZHANG L, GUO L F, HUANG S, KANG J, SUN W M. Synthesis, Characterization and Biological Activity of Pr(Ⅲ) Complex Constructed by Pyridine-2, 6-dicarboxylate[J]. Chinese J. Inorg. Chem., 2021,37(7):1269-1276. doi: 10.11862/CJIC.2021.139

    25. [25]

      Kahali P, Montazer M, Dolatabadi M K. Attachment of Tragacanth Gum on Polyester Fabric through the Synthesis of Iron Oxide Gaining Novel Biological, Physical, and Thermal Features[J]. Int. J. Biol. Macromol., 2022,207:193-204. doi: 10.1016/j.ijbiomac.2022.02.194

    26. [26]

      Marrazzini G, Giovannini T, Scavino M, Egidi F, Cappelli C, Koch H. Multilevel Density Functional Theory[J]. J. Chem. Theory Comput., 2021,17(2):791-803. doi: 10.1021/acs.jctc.0c00940

    27. [27]

      Bushuyev O S, Brown P, Maiti A, Gee R H, Peterson G R, Weeks B L, Hope-Weeks L J. Ionic Polymers as a New Structural Motif for High-Energy-Density Materials[J]. J. Am. Chem. Soc., 2012,134(3):1422-1425. doi: 10.1021/ja209640k

    28. [28]

      Li S H, Wang Y, Qi C, Zhao X X, Zhang J C, Zhang S W, Pang S P. 3D Energetic Metal-Organic Frameworks: Synthesis and Properties of High Energy Materials[J]. Angew. Chem. Int. Ed., 2013,52(52):14031-14035. doi: 10.1002/anie.201307118

    29. [29]

      Song H, Li B, Gao X Z, Shan F L, Ma X X, Tian X Y, Chen X Y. Thermodynamics and Catalytic Properties of Two Novel Energetic Complexes Based on 3-Amino-1, 2, 4-triazole-5-carboxylic Acid[J]. ACS Omega, 2022,7:3024-3029. doi: 10.1021/acsomega.1c06052

    30. [30]

      Xu J G, Wang S H, Zhang M J, Sun C, Xiao Y, Li R, Zheng F K, Guo G C, Huang J S. Nitrogen-Rich Tetranuclear Metal Complex as a New Structural Motif for Energetic Materials[J]. ACS Omega, 2017,2(1):346-352. doi: 10.1021/acsomega.6b00431

    31. [31]

      Zhang Q, Shreeve J M. Metal-Organic Frameworks as High Explosives: A New Concept for Energetic Materials[J]. Angew. Chem. Int. Ed., 2014,53(10):2540-2542. doi: 10.1002/anie.201310014

    32. [32]

      Liu X L, Li J Z, Bi F Q, Zhang W Q, Zhang G F, Gao Z W. Ionic Ferrocene-Based Burning-Rate Catalysts with Polycyano Anions: Synthesis, Structural Characterization, Migration, and Catalytic Effects during Combustion[J]. Eur. J. Inorg. Chem., 2015(9):1496-1504.

    33. [33]

      Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957,29(11):1702-1706. doi: 10.1021/ac60131a045

    34. [34]

      Soria-Verdugo A, Morgano M T, Mätzing H, Goos E, Leibold H, Merz D, Riedel U, Stapf D. Comparison of Wood Pyrolysis Kinetic Data Derived from Thermogravimetric Experiments by Model-Fitting and Model-Free Methods[J]. Energy Conv. Manag., 2020,212112818. doi: 10.1016/j.enconman.2020.112818

    35. [35]

      Bu X R, Jackson C R, van Derveer D, You X Z, Meng Q J, Wang R X. New Copper(Ⅱ) Complexes Incorporating Unsymmetrical Tetradentate Ligands with cis-N2O2 Chromophores: Synthesis, Molecular Structure, Substituent Effect and Thermal Stability[J]. Polyhedron, 1997,16(17):2991-3001. doi: 10.1016/S0277-5387(97)00048-X

    36. [36]

      Wang J, Wang Y, Zhang Z H, Zhang X D, Liu X Z, Gao G R, Liu X Y, Zhang Y. Syntheses and Structural Analyses of Nine-Coordinate Protonated (Py)2[Gd(HNta)(Nta)(H2O)]·5H2O and Eight-Coordinate (NH4)3[Ho(Nta)2] Complexes[J]. Russ. J. Coord. Chem., 2006,32(1):63-70. doi: 10.1134/S1070328406010118

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    3. [3]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    4. [4]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    5. [5]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    6. [6]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    7. [7]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    12. [12]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    13. [13]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    14. [14]

      Zhen-Zhen DongJin-Hao ZhangLin ZhuXiao-Zhong FanZhen-Guo LiuYi-Bo YanLong Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773

    15. [15]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    16. [16]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    17. [17]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    18. [18]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    19. [19]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    20. [20]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

Metrics
  • PDF Downloads(9)
  • Abstract views(764)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return