Citation: Hui-Yan FANG, Jing-Chuang ZHAO, Xian-Yu KANG, Yan-Cai LI. Ni/Biomass-Derived Nitrogen-Doped Porous Carbon Nanocomposites: Preparation and Electrocatalysis for Methanol Oxidation Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1959-1969. doi: 10.11862/CJIC.2022.188 shu

Ni/Biomass-Derived Nitrogen-Doped Porous Carbon Nanocomposites: Preparation and Electrocatalysis for Methanol Oxidation Reaction

  • Corresponding author: Yan-Cai LI, liyancai@mnnu.edu.cn
  • Received Date: 3 March 2022
    Revised Date: 14 July 2022

Figures(9)

  • The low-cost nickel nanoparticles/towel gourd derived nitrogen-doped porous carbon nanocomposites (Ni/T-dNPCN) were prepared with Ni(Ac)2·4H2O and towel gourd by impregnation and then pyrolysis. The electrocatalytic performance of the nanocomposites for methanol oxidation reaction (MOR) was studied, and the effect of pyrolysis temperature on its structure and properties was also discussed. The results demonstrated that the Ni/T-dNPCN modified glassy carbon electrode (Ni/T-dNPCN/GCE) exhibited well electrocatalytic activity for MOR in alkaline electrolytes. Among them, Ni/T-dNPCN800/GCE possessed the best catalytic performance with the lowest onset potential (0.344 V (vs Ag/AgCl)), the highest catalytic current density (mass activity: 1 902 mA·mgNi-1; specific activity: 1.61 mA·cm-2) and the fastest kinetics process (Tafel slope: 50.23 mV·dec-1), its catalytic activity was about 3.92 times that of the commercial Pt/C catalyst modified glassy carbon electrode. And according to the chronoamperometry test, Ni/T-dNPCN800/GCE displayed good stability.
  • 加载中
    1. [1]

      Hussain S, Ullah N, Zhang Y Y, Shaheen A, Javed M S, Lin L Y, Zulfiqar , Shah S B, Liu G W, Qiao G J. One-Step Synthesis of Unique Catalyst Ni9S8@C for Excellent Mor Performances[J]. Int. J. Hydrogen Energy, 2019,44(45):24525-24533. doi: 10.1016/j.ijhydene.2019.07.190

    2. [2]

      Ren X F, Lv Q Y, Liu L F, Liu B H, Wang Y R, Liu A M, Wu G. Current Progress of Pt and Pt-Based Electrocatalysts Used for Fuel Cells[J]. Sustainable Energy Fuels, 2020,4(1):15-30. doi: 10.1039/C9SE00460B

    3. [3]

      Huang W J, Wang H T, Zhou J G, Wang J, Duchesne P N, Muir D, Zhang P, Han N, Zhao F P, Zeng M, Zhong J, Jin C H, Li Y G, Lee S T, Dai H J. Highly Active and Durable Methanol Oxidation Electrocatalyst Based on the Synergy of Platinum-Nickel Hydroxide-Graphene[J]. Nat. Commun., 2015,6(1)10035. doi: 10.1038/ncomms10035

    4. [4]

      Sarwar E, Noor T, Iqbal N, Mehmood Y, Ahmed S, Mehek R. Effect of Co-Ni Ratio in Graphene Based Bimetallic Electro-Catalyst for Methanol Oxidation[J]. Fuel Cells, 2018,18(2):189-194. doi: 10.1002/fuce.201700143

    5. [5]

      Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. Size Dependence of Vapor Phase Hydrodeoxygenation of M-Cresol on Ni/ SiO2 Catalysts[J]. ACS Catal., 2018,8(3):1672-1682. doi: 10.1021/acscatal.7b04097

    6. [6]

      Xie Z Y, Zhang T, Zhao Z K. Ni Nanoparticles Grown on SiO2 Supports Using a Carbon Interlayer Sacrificial Strategy for Chemoselective Hydrogenation of Nitrobenzene and M-Cresol[J]. ACS Appl. Nano Mater., 2021,4(9):9353-9360. doi: 10.1021/acsanm.1c01819

    7. [7]

      Niu W H, Li L G, Liu X J, Zhou W J, Li W, Lu J, Chen S W. One-Pot Synthesis of Graphene/Carbon Nanospheres/Graphene Sandwich Supported Pt3Ni Nanoparticles with Enhanced Electrocatalytic Activity in Methanol Oxidation[J]. Int. J. Hydrogen Energy, 2015,40(15):5106-5114. doi: 10.1016/j.ijhydene.2015.02.095

    8. [8]

      Sun H M, Ye Y X, Liu J, Tian Z F, Cai Y Y, Li P F, Liang C H. Pure Ni Nanocrystallines Anchored on rGO Present Ultrahigh Electrocatalytic Activity and Stability in Methanol Oxidation[J]. Chem. Commun., 2018,54(13):1563-1566. doi: 10.1039/C7CC09361F

    9. [9]

      Wu N, Zhai M X, Chen F, Zhang X, Guo R H, Hu T P, Ma M M. Nickel Nanocrystal/Nitrogen-Doped Carbon Composites as Efficient and Carbon Monoxide-Resistant Electrocatalysts for Methanol Oxidation Reactions[J]. Nanoscale, 2020,12(42):21687-21694. doi: 10.1039/D0NR04822D

    10. [10]

      Wang N, Hei Y S, Liu J J, Sun M M, Sha T Z, Hassan M, Bo X J, Guo Y N, Zhou M. Low-Cost and Environment-Friendly Synthesis of Carbon Nanorods Assembled Hierarchical Mesomacroporous Carbons Networks Aerogels from Natural Apples for the Electrochemical Determination of Ascorbic Acid and Hydrogen Peroxide[J]. Anal. Chim. Acta, 2019,1047:36-44. doi: 10.1016/j.aca.2018.09.052

    11. [11]

      Sha T Z, Liu J J, Sun M M, Li L, Bai J, Hu Z Q, Zhou M. Green and Low-Cost Synthesis of Nitrogen-Doped Graphene-like Mesoporous Nanosheets from the Biomass Waste of Okara for the Amperometric Detection of Vitamin C in Real Samples[J]. Talanta, 2019,200:300-306. doi: 10.1016/j.talanta.2019.03.071

    12. [12]

      Zhang W J, Liu L, Li Y G, Wang D Y, Ma H, Ren H L, Shi Y L, Han Y J, Ye B C. Electrochemical Sensing Platform Based on the Biomass-Derived Microporous Carbons for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid[J]. Biosens. Bioelectron., 2018,121:96-103. doi: 10.1016/j.bios.2018.08.043

    13. [13]

      Sha T Z, Li X X, Liu J J, Sun M M, Wang N, Bo X J, Guo Y N, Hu Z Q, Zhou M. Biomass Waste Derived Carbon Nanoballs Aggregation Networks-Based Aerogels as Electrode Material for Electrochemical Sensing[J]. Sens. Actuators B, 2018,277:195-204. doi: 10.1016/j.snb.2018.09.011

    14. [14]

      Wang T H, Yang Y H, Fan L, Wang L L, Ma R F, Zhang Q F, Zhao J G, Ge J M, Lu X L, Yu X Z, Yang H G, Lu B G. Ultrathin Honeycomb-like Carbon as Sulfur Host Cathode for High Performance Lithium-Sulfur Batteries[J]. ACS Appl. Energy Mater., 2018,1(12):7076-7084. doi: 10.1021/acsaem.8b01498

    15. [15]

      Liu T T, Li M, Bo X J, Zhou M. Designing Transition Metal Alloy Nanoparticles Embedded Hierarchically Porous Carbon Nanosheets as High-Efficiency Electrocatalysts toward Full Water Splitting[J]. J. Colloid Interface Sci., 2019,537:280-294. doi: 10.1016/j.jcis.2018.11.017

    16. [16]

      Li M, Han C, Zhang Y F, Bo X J, Guo L P. Facile Synthesis of Ultrafine Co3O4 Nanocrystals Embedded Carbon Matrices with Specific Skeletal Structures as Efficient Nonenzymatic Glucose Sensors[J]. Anal. Chim. Acta, 2015,861:25-35. doi: 10.1016/j.aca.2014.12.030

    17. [17]

      Zhu J Y, Chen S Q, Xue Q, Li F M, Yao H C, Xu L, Chen Y. Hierarchical Porous Rh Nanosheets for Methanol Oxidation Reaction[J]. Appl. Catal. B-Environ., 2020,264118520. doi: 10.1016/j.apcatb.2019.118520

    18. [18]

      Yao Q, Huang B L, Zhang N, Sun M Z, Shao Q, Huang X Q. Channel-Rich RuCu Nanosheets for pH-Universal Overall Water Splitting Electrocatalysis[J]. Angew. Chem. Int. Ed., 2019,58(39):13983-13988. doi: 10.1002/anie.201908092

    19. [19]

      Qiu Y P, Shi Q, Zhou L L, Chen M H, Chen C, Tang P P, Walker G S, Wang P. NiPt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate[J]. ACS Appl. Mater. Interfaces, 2020,12(16):18617-18624. doi: 10.1021/acsami.0c03096

    20. [20]

      Yang H Y, Chen Z L, Hao W J, Xu H B, Guo Y H, Wu R B. Catalyzing Overall Water Splitting at an Ultralow Cell Voltage of 1.42 V via Coupled Co-Doped NiO Nanosheets with Carbon[J]. Appl. Catal B-Environ., 2019,252:214-221. doi: 10.1016/j.apcatb.2019.04.021

    21. [21]

      Tong J H, Wang W H, Li Q, Liu F F, Ma W M, Li W Y, Su B T, Lei Z Q, Bo L L. Composite of FeCo Alloy Embedded in Biocarbon Derived from Eggshell Membrane with High Performance for Oxygen Reduction Reaction and Supercapacitor[J]. Electrochim. Acta, 2017,248:388-396. doi: 10.1016/j.electacta.2017.07.125

    22. [22]

      Kong F T, Fan X H, Zhang X Y, Wang L Y, Kong A G, Shan Y K. Soft-Confinement Conversion of Co-Salen-Organic-Frameworks to Uniform Cobalt Nanoparticles Embedded within Porous Carbons as Robust Trifunctional Electrocatalysts[J]. Carbon, 2019,149:471-482. doi: 10.1016/j.carbon.2019.04.079

    23. [23]

      Barakat N A M, Motlak M, Kim B S, El-Deen A G, Al-Deyab S S, Hamza A M. Carbon Nanofibers Doped by NiXCo1-X Alloy Nanoparticles as Effective and Stable Non Precious Electrocatalyst for Methanol Oxidation in Alkaline Media[J]. J. Mol. Catal. A: Chem., 2014,394:177-187. doi: 10.1016/j.molcata.2014.07.011

    24. [24]

      Zhao Y C, Yang X L, Tian J N, Wang F Y, Zhan L. Methanol Electro-Oxidation on Ni@Pd Core-Shell Nanoparticles Supported on Multiwalled Carbon Nanotubes in Alkaline Media[J]. Int. J. Hydrogen Energy, 2010,35(8):3249-3257. doi: 10.1016/j.ijhydene.2010.01.112

    25. [25]

      Huang Y F, Kong F T, Tian H, Pei F L, Chen Y F, Meng G, Chang Z W, Chen C, Cui X Z, Shi J L. Ultrauniformly Dispersed Cu Nanoparticles Embedded in N-Doped Carbon as a Robust Oxygen Electrocatalyst[J]. ACS Sustainable Chem. Eng., 2022,10(19):6370-6381. doi: 10.1021/acssuschemeng.2c01086

    26. [26]

      Su Z, Ling H Y, Li M, Qian S S, Chen H, Lai C, Zhang S Q. Honeycomb-like Carbon Materials Derived from Coffee Extract via a "Salty"Thermal Treatment for High-Performance LiI2 Batteries[J]. Carbon Energy, 2020,2(2):265-275. doi: 10.1002/cey2.40

    27. [27]

      Rezaee S, Shahrokhian S. Facile Synthesis of Petal-like NiCo/NiO-CoO/Nanoporous Carbon Composite Based on Mixed-Metallic MOFs and Their Application for Electrocatalytic Oxidation of Methanol[J]. Appl. Catal. B-Environ., 2019,244:802-813. doi: 10.1016/j.apcatb.2018.12.013

    28. [28]

      Zhang B W, Sheng T, Wang Y X, Chou S, Davey K, Dou S X, Qiao S Z. Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions[J]. Angew. Chem. Int. Ed., 2019,58(5):1484-1488. doi: 10.1002/anie.201811080

    29. [29]

      Liu H, Deng Z Q, Wang M Q, Chen H, Zhang L C, Zhang Y Q, Zhan R M, Xu M W, Bao S J. Novel CdFe Bimetallic Complex-Derived Ultrasmall Fe-and N-Codoped Carbon as a Highly Efficient Oxygen Reduction Catalyst[J]. ACS Appl. Mater. Interfaces, 2019,11(24):21481-21488. doi: 10.1021/acsami.9b03518

    30. [30]

      Liu H, Yang D H, Wang X Y, Zhang J, Han B H. N-Doped Graphitic Carbon Shell-Encapsulated FeCo Alloy Derived from Metal-Polyphenol Network and Melamine Sponge for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions in Alkaline Media[J]. J. Colloid Interface Sci., 2021,581:362-373. doi: 10.1016/j.jcis.2020.07.055

    31. [31]

      Zhang Y Z, Song Y Y, Zhao J C, Li S X, Li Y C. Ultrahigh Electrocatalytic Activity and Durability of Bimetallic Au@Ni Core-Shell Nanoparticles Supported on rGO for Methanol Oxidation Reaction in Alkaline Electrolyte[J]. J. Alloy. Compd., 2020,822153322. doi: 10.1016/j.jallcom.2019.153322

    32. [32]

      Tan S F, Ouyang W M, Ji Y J, Hong Q W. Carbon Wrapped Bimetallic NiCo Nanospheres toward Excellent HER and OER Performance[J]. J. Alloy. Compd., 2021,889161528. doi: 10.1016/j.jallcom.2021.161528

    33. [33]

      Dinh K N, Zheng P L, Dai Z F, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q Y. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting[J]. Small, 2018,14(8)1703257. doi: 10.1002/smll.201703257

    34. [34]

      Sun X H, Shao Q, Pi Y C, Guo J, Huang X Q. A General Approach to Synthesise Ultrathin Nim (M=Fe, Co, Mn) Hydroxide Nanosheets as High-Performance Low-Cost Electrocatalysts for Overall Water Splitting[J]. J. Mater. Chem. A, 2017,5(17):7769-7775. doi: 10.1039/C7TA02091K

    35. [35]

      Lin M T, Lu R H, Luo W, Xu N, Zhao Y, Mai L Q. Active Site Identification and Interfacial Design of a MoP/N-Doped Carbon Catalyst for Efficient Hydrogen Evolution Reaction[J]. ACS Appl. Energy Mater., 2021,4(6):5486-5492. doi: 10.1021/acsaem.1c00121

    36. [36]

      Du J N, You S J, Li X R, Tang B, Jiang B J, Yu Y, Cai Z, Ren N Q, Zou J L. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like Cose/Nise Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation[J]. ACS Appl. Mater. Interfaces, 2020,12(1):686-697. doi: 10.1021/acsami.9b16626

    37. [37]

      Baruah B, Kumar A, Umapathy G R, Ojha S. Enhanced Electrocatalytic Activity of Ion Implanted rGO/PEDOT: PSS Hybrid Nanocomposites towards Methanol Electro-Oxidation in Direct Methanol Fuel Cells[J]. J. Electroanal. Chem., 2019,840:35-51. doi: 10.1016/j.jelechem.2019.03.053

    38. [38]

      Fu G, Yan X, Cui Z, Sun D, Xu L, Tang Y, Goodenough J B, Lee J M. Catalytic Activities for Methanol Oxidation on Ultrathin CuPt3 Wavy Nanowires with/without Smart Polymer[J]. Chem. Sci., 2016,7(8):5414-5420. doi: 10.1039/C6SC01501H

    39. [39]

      Wang L Y, Zhang G G, Liu Y, Li W F, Lu W, Huang H T. Facile Synthesis of a Mechanically Robust and Highly Porous NiO Film with Excellent Electrocatalytic Activity towards Methanol Oxidation[J]. Nanoscale, 2016,8(21):11256-11263. doi: 10.1039/C6NR01991A

    40. [40]

      Wang Q, Zhao Z L, Jia Y L, Wang M P, Qi W H, Pang Y, Yi J, Zhang Y F, Li Z, Zhang Z. Unique Cu@CuPt Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity[J]. ACS Appl. Mater. Interfaces, 2017,9(42):36817-36827. doi: 10.1021/acsami.7b11268

    41. [41]

      Shi X Q, Wen Y, Guo X Y, Pan Y X, Ji Y Y, Ying Y, Yang H F. Dentritic Cuptpd Catalyst for Enhanced Electrochemical Oxidation of Methanol[J]. ACS Appl. Mater. Interfaces, 2017,9(31):25995-26000. doi: 10.1021/acsami.7b06296

    42. [42]

      Yang B Q, Yu Y W, Qiao J Y, Yuan L F, Shen X D, Hu X L. Solution Plasma Method for the Preparation of Cu-Ni/CuO-NiO with Excellent Methanol Electrocatalytic Oxidation Performance[J]. Appl. Surf. Sci., 2020,513145808. doi: 10.1016/j.apsusc.2020.145808

    43. [43]

      Sun H M, Liu J, Zhang C, Yuan Q L, Ye Y X, Yan W S, Tian Z F, Liang C H. S, N Dual-Doped Carbon Nanotubes as Substrate to Enhance the Methanol Oxidation Performance of NiO Nanoparticles[J]. Carbon, 2019,152:114-119. doi: 10.1016/j.carbon.2019.06.007

    44. [44]

      Dubale A A, Zheng Y Y, Wang H, Hubner R, Li Y, Yang J, Zhang J W, Sethi N K, He L Q, Zheng Z K, Liu W. High-Performance Bismuth-Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction[J]. Angew. Chem. Int. Ed., 2020,59(33):13891-13899. doi: 10.1002/anie.202004314

    45. [45]

      Zhao J C, Zhang Y Z, Kang X Y, Li Y C. The Preparation of NiO/Ni-N/C Nanocomposites and Its Electrocatalytic Performance for Methanol Oxidation Reaction[J]. New J. Chem., 2020,44(35):14970-14978. doi: 10.1039/D0NJ02045A

    46. [46]

      Wang J, Zhao Q, Hou H S, Wu Y F, Yu W Z, Ji X B, Shao L D. Nickel Nanoparticles Supported on Nitrogen-Doped Honeycomb-like Carbon Frameworks for Effective Methanol Oxidation[J]. RSC Adv., 2017,7(23):14152-14158. doi: 10.1039/C7RA00590C

    47. [47]

      Chen L S, Hua Z L, Shi J L, He M Y. CuO/Co(OH)2 Nanosheets: A Novel Kind of Electrocatalyst for Highly Efficient Electrochemical Oxidation of Methanol[J]. ACS Appl. Mater. Interfaces, 2018,10(45):39002-39008. doi: 10.1021/acsami.8b16256

    48. [48]

      Dong B, Li W, Huang X X, Ali Z S, Zhang T, Yang Z Y, Hou Y L. Fabrication of Hierarchical Hollow Mn Doped Ni(OH)2 Nanostructures with Enhanced Catalytic Activity towards Electrochemical Oxidation of Methanol[J]. Nano Energy, 2019,55:37-41. doi: 10.1016/j.nanoen.2018.10.050

    49. [49]

      Cui R L, Liu S C, Guo X H, Huang H, Wang J H, Liu B, Li Y, Zhao D G, Dong J Q, Sun B Y. N-Doping Holey Graphene TiO2-Pt Composite as Efficient Electrocatalyst for Methanol Oxidation[J]. ACS Appl. Energy Mater., 2020,3(3):2665-2673. doi: 10.1021/acsaem.9b02364

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(8)
  • Abstract views(1016)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return