Citation:
Xiang-Wen WANG. Layered Hexagonal Co1-xS Decorating N-Doped Carbon Nanotubes as a Sulfur Host for Li-S Batteries[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(10): 2065-2071.
doi:
10.11862/CJIC.2022.180
-
The design and assembly of nanostructured materials are devoted to improving the electrochemical properties of the Li-S batteries (LSBs) by synergistic effect. In this work, a composite of hexagonal Co1-xS nanosheets decorating N-doped carbon nanotube (Co1-xS-CNT) was successfully synthesized and used as a sulfur host for Li-S batteries (LSBs). In Co1-xS-CNT/S, the polar hexagonal Co1-xS nanosheets can absorb the lithium polysulfide through chemisorption, at the same time, the CNT can provide a highly conductive network. Based on the synergy of physical encapsulating and chemical trapping, the Co1-xS-CNT/S cathode exhibited excellent electrochemical performance, especially the superior cycle performance. After 170 cycles, the Co1-xS-CNT/S can maintain a discharge capacity of 405.6 mAh·g-1 at 0.5C, with a stable Coulombic efficiency (over 99.2%).
-
-
-
[1]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable Lithium-Sulfur Battery[J]. Chem. Rev., 2014,114:11751-11787. doi: 10.1021/cr500062v
-
[2]
Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451:652-657. doi: 10.1038/451652a
-
[3]
Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Synthesis of the CoOOH Fine Nanoflake Film with the High Rate Capacitance Property[J]. J. Power Sources, 2006,158:779-783. doi: 10.1016/j.jpowsour.2005.09.052
-
[4]
Huang J H, Chen J T, Yao T, He J F, Jiang S, Sun Z H, Liu Q H, Cheng W, Hu F, Jiang Y, Pan Z Y, Wei S Q. CoOOH Nanosheets with High Mass Activity for Water Oxidation[J]. Angew. Chem. Int. Ed., 2015,54:8722-8727. doi: 10.1002/anie.201502836
-
[5]
Wang Z Y, Wang L, Liu S, Li G R, Gao X P. Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium-Sulfur Battery[J]. Adv. Funct. Mater., 2019,291901051. doi: 10.1002/adfm.201901051
-
[6]
Sun R, Bai Y, Luo M, Qu M X, Wang Z H, Sun W, Sun K N. Enhancing Polysulfide Confinement and Electrochemical Kinetics by Amorphous Cobalt Phosphide for Highly Efficient Lithium-Sulfur Batteries[J]. ACS Nano, 2021,15:739-750. doi: 10.1021/acsnano.0c07038
-
[7]
Tang H T, Yang J L, Zhang G, Liu C K, Wang H, Zhao Q H, Hu J T, Duan Y D, Pan F. Self-Assembled N-Graphene Nanohollows Enabling Ultrahigh Energy Density Cathode for Li-S Batteries[J]. Nanoscale, 2018,10:386-395. doi: 10.1039/C7NR06731C
-
[8]
Li Z, Jiang Y, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. A Highly Ordered Meso@Microporous Carbon-Supported Sulfur @Smaller Sulfur Core - Shell Structured Cathode for Li - S Batteries[J]. ACS Nano, 2014,8:9295-9303. doi: 10.1021/nn503220h
-
[9]
Liu T, Zhang L Y, Cheng B, Yu J G. Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage[J]. Adv. Energy Mater., 2019,91803900. doi: 10.1002/aenm.201803900
-
[10]
Lu S T, Cheng Y W, Wu X H, Liu J. Significantly Improved Long- Cycle Stability in High-Rate Li-S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers[J]. Nano Lett., 2013,13:2485-2489. doi: 10.1021/nl400543y
-
[11]
Chen M F, Jiang S X, Cai S, Wang X Y, Xiang K X, Ma Z Y, Song P, Fisher A C. Hierarchical Porous Carbon Modified with Ionic Surfactants as Efficient Sulfur Hosts for the High - Performance Lithium - Sulfur Batteries[J]. Chem. Eng. J., 2017,313:404-414. doi: 10.1016/j.cej.2016.12.081
-
[12]
Tan K, Liu Y, Tan Z L, Zhang J Y, Hou L R, Yuan C Z. High-Yield and In-Situ Fabrication of High-Content Nitrogen-Doped Grapheme Nanoribbons@Co/CoOOH as an Integrated Sulfur Host towards Li-S Batteries[J]. J. Mater. Chem. A, 2020,8:3048-3059. doi: 10.1039/C9TA13414J
-
[13]
Zhong W, Chen Q W, Yang F, Liu W, Li G D, Xie K, Ren M M. N, P Dual-Doped Carbon Nanotube with Superior High-Rate Sodium Storage Performance for Sodium Ion Batteries[J]. J. Electroanal. Chem., 2019,850113392. doi: 10.1016/j.jelechem.2019.113392
-
[14]
Ye H, Wang C Y, Zuo T T, Wang P F, Yin Y X, Zheng Z, Wang P, Cheng J, Cao F F, Guo Y G. Realizing a Highly Stable Sodium Battery with Dendrite-Free Sodium Metal Composite Anodes and O3- Type Cathodes[J]. Nano Energy, 2018,48:369-376. doi: 10.1016/j.nanoen.2018.03.069
-
[15]
Chen X D, Xu Y J, Du F H, Wang Y. Covalent Organic Framework Derived Boron/Oxygen Codoped Porous Carbon on CNTs as an Efficient Sulfur Host for Lithium-Sulfur Batteries[J]. Small Methods, 2019,111900338.
-
[16]
Huang S Z, Lim Y V, Zhang X M, Wang Y, Zheng Y, Kong D Z, Ding M, Yang S Y, Yang H Y. Regulating the Polysulfide Redox Conversion by Iron Phosphide Nanocrystals for High-Rate and Ultrastable Lithium-Sulfur Battery[J]. Nano Energy, 2018,51:340-348. doi: 10.1016/j.nanoen.2018.06.052
-
[17]
Wang Y K, Zhang R F, Pang Y C, Chen X, Lang J X, Xu J J, Xiao C H, Li H L, Xi K, Ding S J. Carbon@Titanium Nitride Dual Shell Nanospheres as Multi-functional Hosts for Lithium Sulfur Batteries[J]. Energy Storage Mater., 2019,16:228-235. doi: 10.1016/j.ensm.2018.05.019
-
[18]
Yang F, Zhong W, Ren M M, Liu W L, Li M, Li G D, Su L W. Poplar Flower-like Nitrogen-Doped Carbon Nanotube@VS4 Composites with Excellent Sodium Storage Performance[J]. Inorg. Chem. Front., 2020,7:4883-4891. doi: 10.1039/D0QI00985G
-
[19]
Zhou S Y, Yang S, Ding X W, Lai Y C, Nie H G, Zhang Y G, Chan D, Duan H, Huang S M, Yang Z. Dual-regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium-Sulfur Batteries[J]. ACS Nano, 2020,14:7538-7551. doi: 10.1021/acsnano.0c03403
-
[20]
Razzaq A A, Yuan X T, Chen Y J, Hu J P, Mu Q Q, Ma Y, Zhao X H, Miao L X, Ahn J H, Peng Y, Deng Z. Anchoring MOF-Derived CoS2 on Sulfurized Polyacrylonitrile Nanofibers for High Areal Capacity Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2020,8:1298-1306. doi: 10.1039/C9TA11390H
-
[21]
Li B H, Pan Y X, Luo B, Zao J, Xiao Y H, Lei S J, Cheng B C. MOF- Derived NiCo2S4@C as a Separator Modification Material for High- Performance Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2020,344135811. doi: 10.1016/j.electacta.2020.135811
-
[22]
Qiu Y, Fan L S, Wang M X, Yin X J, Wu X, Sun X, Tian D, Guan B, Tang D Y, Zhang N Q. Precise Synthesis of Fe-N2 Sites with High Activity and Stability for Long - Life Lithium - Sulfur Batteries[J]. ACS Nano, 2020,14:16105-16113. doi: 10.1021/acsnano.0c08056
-
[23]
Xiao T J, Yi F J, Yang M Z, Liu W L, Li M, Ren M M, Zhang X, Zhou Z. A Composite of CoNiP Quantum Dots-Decorated Reduced Graphene Oxide as a Sulfur Host for Li-S Batteries[J]. J. Mater. Chem. A, 2021,9:16692-16698. doi: 10.1039/D1TA03608D
-
[1]
-
-
-
[1]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[4]
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
-
[5]
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
-
[6]
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
-
[7]
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
-
[8]
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
-
[9]
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
-
[10]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[11]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[12]
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
-
[13]
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
-
[14]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[15]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[16]
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
-
[17]
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
-
[18]
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
-
[19]
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
-
[20]
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(578)
- HTML views(147)